X-Droid: A Quick and Easy Android Prototyping Framework
with a Single-App lllusion

Donghwi Kim,* Sooyoung Park,” Jihoon Ko,* Steven Y. Ko,” and Sung-Ju Lee*

*KAIST
Daejeon, Korea

TUniversity at Buffalo
Buffalo, NY, USA

{dhkim09, sypark0614, jihoonko, profsj} @kaist.ac.kr, stevko@buffalo.edu

ABSTRACT

We present X-Droid, a framework that provides Android app
developers an ability to quickly and easily produce functional
prototypes. Our work is motivated by the need for such abil-
ity and the lack of tools that provide it. Developers want to
produce a functional prototype rapidly to test out potential
features in real-life situations. However, current prototyping
tools for mobile apps are limited to creating non-functional
UI mockups that do not demonstrate actual features. With
X-Droid, developers can create a new app that imports vari-
ous kinds of functionality provided by other existing Android
apps. In doing so, developers do not need to understand how
other Android apps are implemented or need access to their
source code. X-Droid provides a developer tool that enables
developers to use the Uls of other Android apps and import
desired functions into their prototypes. X-Droid also provides
arun-time system that executes other apps’ functionality in the
background on off-the-shelf Android devices for seamless in-
tegration. Our evaluation shows that with the help of X-Droid,
a developer imported a function from an existing Android app
into a new prototype with only 51 lines of Java code, while the
function itself requires 10,334 lines of Java code to implement
(i.e., 200x improvement).

Author Keywords
Programming by demonstration (PBD); Android; Functional
prototyping; Development frameworks

CCS Concepts
*Software and its engineering — Reusability; Development
frameworks and environments;

INTRODUCTION

The ability to quickly prototype an application is critical in
software development. Using prototypes, developers can eval-
uate their design decisions in a realistic fashion, solicit feed-
back from potential users to check if their applications meet
Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

UIST 2019, October 20-23, 2019, New Orleans, LA, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6816-2/19/10. .. 15.00

DOI: 10.1145/3332165.3347890

the users’ specifications or expectations, and shape the final
designs and features before releasing actual products. The
process of iterating over different prototypes can significantly
improve the final user experience and save the cost of having
to fix problems after release.

Because of its importance, there are many proposals that aim
to enable quick prototyping. Throw-away prototyping [1], op-
portunistic prototyping [2,3], and patchwork prototyping [4,5]
are some of the well-known prototyping strategies that en-
able developers to produce prototypes rapidly. There are also
many commercial tools available for prototyping for domains
such as web app development [6—8] and mobile app develop-
ment [9-11].

When developing a prototype, it is crucial to demonstrate not
only the UI of an application, but also the functionality of
it. This is especially true for mid- to final-stage prototypes.
In an early stage of development, it is perhaps acceptable to
just show a set of static images of Ul mockups or a proto-
type with limited interactivity (e.g., mockup UI clicks and
transitions). However, at later stages of development, it is
necessary to use a prototype and evaluate it in real-life situa-
tions [5]. A functional prototype is also necessary for software
development outside commercial domains, such as academic
research, where resource constraints often prevent investing
in full-scale software development. Although leveraging open
source projects can help in creating functional prototypes, it
still requires significant development effort due to the need
for extracting (and perhaps sanitizing) code from an unfamilar
code base that is potentially large.

We present X-Droid, a framework for Android app devel-
opers to quickly prototype experimental features for ongo-
ing app development. X-Droid enables developers to im-
port different kinds of functionality from other existing An-
droid apps without having the source code or understand-
ing the internals of those apps. By allowing developers to
leverage existing apps’ functions quickly and easily, X-Droid
enables developers to iterate over functional prototypes and
test out different features rapidly. X-Droid makes this possi-
ble by adopting programming by demonstration (PBD) [12]
and combining it with our proposed background exe-
cution of existing Android apps.

X-Droid adopts programming by demonstration in its devel-
opment tool, where a developer “demonstrates” a series of

10.1145/3332165.3347890

UI actions on an existing Android app. The UI actions are
the ones that trigger the functionality that the developer wants
to use from the existing app in her prototype. For example,
consider a developer of a cookbook app prototype who wants
to test out a feature where the prototype shows the delivery
dates of necessary ingredients. The developer could do this
with X-Droid by demonstrating the Ul actions performed on
a grocery app that shows delivery dates of selected ingredi-
ents. Once a developer demonstrates such Ul actions, X-Droid
generates a piece of code that the developer can embed into
her prototype. This generated code is essentially a series of
X-Droid commands that X-Droid executes at run time.

In order to execute those commands, X-Droid implements
a new run-time system that directly performs UI actions on
an existing app to ultimately execute the function that the Ul
actions trigger. The salient feature of this run-time system
is that it performs all Ul interactions with an existing app
completely in the background, without displaying anything
on the screen. For example, consider the same cookbook
app prototype mentioned earlier, and suppose that a Ul el-
ement of the prototype (e.g., “Get Delivery Dates” button)
executes a series of X-Droid commands that drive the grocery
app. When a prototype tester clicks the button, X-Droid exe-
cutes all commands on the grocery app without displaying any
Ul interaction occurring with the grocery app. In other words,
the tester still sees the Uls displayed by the cookbook app
prototype, not the Uls of the grocery app even when X-Droid
is executing a function from the grocery app. This provides
what we call a single-app illusion—an illusion that a proto-
type tester is interacting with a single-app, which is important
when evaluating the UX of a prototype.

There are many prototyping tools available for mobile app de-
velopment, but they are limited to creating UI mockups [9-11].
Moreover, previous work on creating functional prototypes
in general has focused on web apps, not mobile apps [3].
X-Droid’s goal is to support developers who want to create
functional Android app prototypes.

The main contributions of X-Droid are as follows.

e We design and develop a new Android app development tool
for quick and easy prototyping of functional app features.
X-Droid empowers developers to import app functionality
from other apps without requiring source code or under-
standing the implementation of the functionality.

e We develop a technique to execute an existing app’s func-
tionality completely in the background. The novelty of our
technique lies in converting user-visible, foreground tasks
into background ones. Our technique works with existing
apps on off-the-shelf Android devices; we do not impose
any disruptive barrier to entry, such as operating system
modifications or source code access to existing apps.

e We evaluate the usefulness of X-Droid by conducting a
developer study with five Android developers (two profes-
sionals and three university students) involving app feature
prototyping. Our results show that X-Droid is easy to use,
enabling a participant to import an app function from an

existing app by writing only 51 lines of Java code. With-
out X-Droid, the participant would have needed to migrate
10,344 lines of Java code from an open-source code base
(i.e., X-Droid provides more than 200X improvement).

RELATED WORK

We classify our related work into three categories—(i) tech-
nique that provides new functionality with Uls playing a cen-
tral role, (ii) techniques for rapid mobile app development,
and (iii) techniques that enables alternate forms of Android
app execution.

Ul-based Functionality Provisioning

Programming by demonstration (PBD) has been extensively
used for end-user programming on mobile apps. For exam-
ple, SUGILITE [13] allows smartphone users to develop cus-
tom smartphone automation scripts by recording UI actions.
uLink [14] helps users define custom deep links in uLink-
enabled apps. As it partially records and replays UI actions
to navigate to an activity, deep link execution is similar to
X-Droid’s execution. However, Ul actions occur in the fore-
ground in both SUGILITE and uLink, therefore not suitable
for developing a prototype.

For the web, Ul-based functionality provisioning has been
leveraged for various purposes. CoScripter [15] enables web
processes in enterprises (e.g., conference room reservations)
to be automated through PBD. Highlight [16] enables end-
users to re-create desktop web pages as mobile web pages
using PBD. C3W (Clip, Connect and Clone for the Web) [17]
empowers users to combine two web apps to develop a new
function. However, by the nature of the web, these systems are
vulnerable to the changes in the web page design. In contrast,
X-Droid allows developers to integrate functions from other
Android apps, not web apps, and utilizes Android app package
files (APKSs) that do not change once compiled.

On the other hand, general Ul automation has been used
mainly for mobile app testing [18-24]. As they typically
generate random UI actions with monkey runners or replay
recorded UI actions to cover various test cases, they are dif-
ferent from X-Droid that focuses on easy programming of
intended UI actions.

For web apps, web drivers [25-27] are popular for automat-
ing web testing. Similar to X-Droid, they support so-called
a “headless” mode of execution, where they perform UI inter-
actions on a web page in the background without displaying
anything to their users. In that sense, one can say that X-Droid
supports a headless mode for driving Android apps.

UI mashup creation systems [3,28-32] are also popular and
they allow developers to compose existing UI of web pages
or apps in a new layout. X-Droid is different from them as it
allows developers to implement a new function using existing
apps’ functions.

Modular Programming of Mobile Apps

App Inventor [33] and Thunkable [34] allow users to create
new apps by composing existing program modules through vi-
sual programming. As they ease app development, they could

| |
1) Download an App to > 2) Demonstrate a >

3) Integrate '> 4) Deploy
Borrow Functions from Function to Borrow

| ori g nal App
D —~m—
App Market DevTool & + Wi
FPK Generator i LibP

B4 Prototype

Figure 1: X-Droid usage model.

be useful for functional prototyping of mobile apps. However,
App Inventor and Thunkable only allow developers to re-use
App Inventor or Thunkable modules developed within their
own frameworks while X-Droid allows developers to borrow
functions from any existing Android app.

Alternative Forms of Android App Execution

Techniques that enable alternative forms of execution on An-
droid generally design an app that dynamically loads and exe-
cutes another Android app. For example, Parallel Space [35]
and others [36-39] allow a user to clone already-installed apps
in a virtual app space and execute them as separate copies.
This is useful when using an app with different configura-
tions (e.g., different login profiles). Dynamic APK loading
frameworks [40-44] split an app into smaller chunks and dy-
namically fetch and load each chunk as needed. This method
reduces an app’s binary size and speeds up the booting time.
The biggest advantage of X-Droid over above techniques is
background execution as these techniques execute other apps
in the foreground.

X-DROID OVERVIEW

Figure 1 summarizes a prototype development process using X-
Droid. We present X-Droid’s three design principles (DP) and
app development steps with the following example use case
scenario: Alice and her team are developing a chatting app.
Alice has an idea of a new app feature, smart snoozing, that
snoozes chat notifications while users are asleep. To collect
feedback from her team members, she decides to quickly build
a functional prototype with X-Droid.

DP1 Utilizing existing apps without manual modification

To detect whether a user is sleeping, Alice wants to import
sleep tracking functionality from an existing app. From an
online app market, she finds a sleep tracker app that uses smart-
phone sensors to infer the user’s sleep state. She downloads
the sleep tracker app and uses the app’s package file (called an
APK file on Android) as input to X-Droid.

DP2 Providing ease of programming for developers

After obtaining the APK file, Alice feeds the file to X-Droid’s
developer tool named DevTool running on her computer. De-
vTool enables Alice to demonstrate UI actions that trigger
the sleep tracking function provided by the downloaded sleep
tracker app. To do so, DevTool launches the sleep tracker app
in a special Android emulator that Alice can use to demon-
strate Ul actions. Using the emulator, Alice navigates through
the sleep tracker app’s Uls to where sleep states are displayed.

Alice then informs DevTool that the UI action demonstration
is finished and DevTool generates a corresponding code seg-
ment. This code segment is in Java and uses X-Droid’s API

Generated Code

R rdeUAt n

Figure 2: Screenshot of development assistance tool.

to describe X-Droid commands that perform demonstrated Ul
actions. Alice embeds this code segment into a new method
that she implements for her prototype, isSleeping(), which
returns true if ‘sleeping” is displayed or false otherwise.
The code generated by DevTool uses X-Droid’s API, which is
provided as a library (named LibX). Thus, Alice links LibX
with her chatting app.

Alice then runs a tool called FPK Generator and provides the
sleep tracker app’s APK file as input to the tool. As we discuss
in the ‘Borrowed Function Execution’ section, FPK Generator
transforms an APK file into a X-Droid-compatible form named
Functionality Package (FPK). At run time, X-Droid uses this
FPK file to execute the sleep tracking functionality that Alice
uses in her prototype app.

DP3 Making new apps easily deployable on off-the-shelf An-
droid devices

To test Alice’s new prototype, she and her team install two
apps; Alice’s new prototype and a special Android app named
XExecutor provided by X-Droid. After installing the two apps,
Alice or her team member uses the new prototype just like any
regular Android app. When the prototype app must execute the
embedded sleep tracking functionality, the app communicates
with XExecutor and XExecutor executes the function in the
background using the sleep tracking app’s FPK. XExecutor
does all of the above as a regular Android app and there is no
need to implement anything in the Android OS. This makes it
possible to easily deploy our solution on off-the-shelf Android
devices. We detail the exact mechanism of our background
execution in the ‘Borrowed Function Execution’ section.

PROGRAMMING BY DEMONSTRATION

X-Droid provides an API and DevTool that enable developers
to convert UI actions into a piece of code. DevTool enables
programming by demonstration; using DevTool, a developer
can launch an Android emulator, install a provider app, and
visually interact with the provider app as a regular user. As
the developer interacts with the provider app, DevTool records
all interactions and automatically generates a Java class called
XTask that implements the interactions using X-Droid API
(we detail XTask and our API in later sections).

To implement this mechanism, we modified the Android emu-
lator to capture and log all Ul interactions (i.e., touch events,
key press events, etc.) in the Android View class that rep-

resents a Ul element. View class is the root class for all Ul
classes on Android and all Ul elements are first delivered to
it. Thus, instrumenting View allows us to catch all Ul interac-
tions. Figure 2 shows a screenshot of logged UI actions and
corresponding code generated automatically.

X-Droid assists developers to generalize code created through
PBD, handle unpredictable UI paths, and identify UI elements
in the code. We detail each below.

Generalization: Since X-Droid generates Java code for demon-
strated UI actions, a developer can modify the code to gen-
eralize as necessary. For example, if a developer searches
“New York” on a bus ticketing app during a demonstration, a
corresponding Java code segment with hard-coded “New York”
string will be generated. The developer can generalize search
queries by replacing the string with a variable.

Handling unpredictable UI paths: For UI actions that could
potentially take different program paths due to non-
determinism (e.g., input variation, uses of random numbers,
etc.), X-Droid assists developers by allowing them to register
a fallback callback on unhandled UI events and output. De-
velopers can thus handle unpredicted failures and unintended
executions. Developers can also use it for debugging. We
discuss details in ‘XTask’ and ‘Error Handling’ sections.

Identifying UI elements: It is possible to identify a Ul element
in multiple ways, e.g., by its index or text. By default, DevTool
uses a text string to identify a Ul element if the string is unique
screen-wide. If not, DevTool uses the index given by its
parent element. If desired, developers can review and revise
auto-generated Java code to choose the proper Ul element
specifications. We detail X-Droid API for identifying Ul
elements in the ‘Navigating through UI Objects’ section.

APP DEVELOPMENT WITH X-DROID

While X-Droid provides DevTool for programming by demon-
stration, internally it provides an API that enable developers
to manually convert UI actions into code if they desire more
control. X-Droid supports a developer in the following ways.

1. X-Droid API empowers a developer to declare her desired
functionality in an executable program block. In the block,
the developer programs Ul actions (e.g., clicking and typing)
to trigger the desired functionality of a provider app. The
result of the execution displayed in the UI can be retrieved
from a callback, which is invoked when all programmed
user actions are completed.

2. X-Droid API provides proper abstractions to minimize the
development effort. For example, choosing a Ul element to
click and waiting for a new activity' to come up are trivial
tasks for users. For developers, however, these tasks lead
to a data search problem (i.e., finding a UI element) and
a synchronization problem (i.e., waiting for a new activity
to come up). Using simple-yet-expressive abstractions, X-
Droid API provides ease of programming.

3. X-Droid API provides an error-handling mechanism that
enables developers to catch asynchronous error notifications.

! An activity represents a single window on Android.

1: public class MyTask extends XTask {

2: public void onStart() {

3: // When MyTask starts, reg. OnActivitylListeners
4: setOnActivitylListener (new FSALsnr(),

5: "com. keepassdroid.FileSelectActivity");
6: // Omitted more OnActivitylListener reg.

7: 3

8: private class FSALsnr extends OnActivitylListener {
9: @Override

10: protected OnActivityReturn onActivity(

11: XViewGroup rootXView) {

12: ArraylList<XView> views = new ArraylList<>();
13: // Search a view with "open” text

14: rootXView. findViewsWithText (views, "open”,

15: FIND_VIEWS_WITH_TEXT);

16: // Finish MyTask if the view is not found

17: if (views.size() < 1)

18: return OnActivityReturn.FINISH_XTASK;

19: // Click the view
20: views.get(0).click();
21: // Wait for a next activity triggered by click
22: return OnActivityReturn.WAIT_FOR_NEXT_ACTIVITY;
23: }
24: }
25: // Omitted more OnActivityListener def.
26: 3}

(a) XTask for opening default DB file using KeePassDroid.
KeePassDroid DONATE ABOUT SETTINGS

ENTER DATABASE FILENAME:

/storage/emulated/0/keepass/keepass.kdb -

OPEN CREATE

(b) KeePassDroid’s file select activity. (Empty space is cropped.)
Figure 3: Code snippet for interacting with KeePassDroid.

Developers can catch both visible (e.g., notification bar) and
invisible (e.g., vibration) error notifications and inspect the
state (e.g., color) of a Ul element indicating an error.

XTask

X-Droid API defines a class called XTask that a developer ex-
tends to implement user interactions on a provider app. XTask
is a unit of execution and a developer starts a new XTask in
her app when she wants to execute a borrowed function. Every
XTask should describe a sequence of emulated user interac-
tions starting from the main activity (i.e., the first activity
launched when an app starts) of a provider app. XTask al-
ways gets executed from the main activity with a clean initial
state (e.g., an empty data directory and local DB), freeing
developers from the side effects of previous XTask executions.

XTask defines two lifecycle callbacks, onStart() and
onFinish() that a developer can implement. As the names
suggest, onStart() is invoked at the beginning of an exe-
cution and onFinish() at the end. For each activity that
a developer wants to interact with, the developer must first
register a callback for the activity within onStart(). If a
callback is registered for an activity, it is invoked when the
activity is launched. Callback registration is done by calling
XTask.setOnActivityListener() and supplying an activity
name and a callback.

The rationale behind this callback-based design is two-fold.
First, since the developers are Android developers, it is natural
to provide an event-driven programming model similar to that
of Android [45]. Second, as callbacks effectively capture event
trigger points (e.g., a new activity), it is also intuitive to use.

Figure 3a shows a custom XTask as an example and Figure 3b
shows a screen shot of an activity that XTask uses. Our XTask
interacts with an open-source Android app called KeePass-
Droid [46], which is a password manager that keeps usernames
and passwords in a DB. XTask performs a task of opening the
default DB from KeePassDroid. To do so, XTask implements
onStart() and registers an activity listener for each activity
that it wants to interact with. For example, line 4 in Figure 3a
calls setOnActivitylListener () with an activity name and
an activity listener. Lines 8-24 show an example activity lis-
tener that implements onActivity() thatis invoked when the
associated activity is launched.

onActivity() should return one of the following three values.
A developer should return WAIT_FOR_NEXT_ACTIVITY when
a subsequent activity launch is expected, RETURN_TO_PREV_-
ACTIVITY when XTask should continue at the previous activity,
and FINISH_XTASK when an XTask should finish.

Navigating through Ul Objects

In order to enable developers to programmatically interact
with the UI elements that trigger the execution of borrowed
functions, we provide a hierarchical set of classes that mirror
Android’s UI classes. On Android, the View class and its
subclasses represent Ul elements such as scrollers, buttons,
text boxes, etc. In our design, we represent Ul elements with
XView and its subclasses that exactly mirror Android’s Ul
classes. For example, a button is represented by XButton in
X-Droid and Button in Android. Some apps define custom
Ul elements by extending Android UI classes; e.g., an app can
extend Button to define its own button. When this occurs, we
represent it using the closest ancestor in the class hierarchy.

We also provide XViewGroup, a mirror of Android’s
ViewGroup, which can contain a hierarchy of Ul elements
using nested XViewGroup objects and XView objects. When
a new activity starts, we invoke onActivity() and pass an
XViewGroup object that contains the hierarchy of all UI el-
ements within the activity. To further assist developers, we
provide navigation helper methods such as getChildAt () that
enables access to a direct child contained in an XViewGroup
object. Table 1a lists our navigation helper methods. X-Droid
API is designed to adopt class and method convention from
Android API as much as possible to ease the learning curve.

To perform UI actions on Ul elements, developers can call Ul
action methods implemented in XView and its subclasses. For
example, XTextView implements readText () that returns the
text it contains. Table 1b lists some Ul action methods we
define (we do not list the entire set due to space constraints).
We define these methods using Java interfaces to customize
the behavior of a UI action for each UI element.

Our design allows developers to interact with UI elements
directly at the object level. This is more advantageous than the
traditional pixel-level approaches, where developers use X-Y

coordinates to locate target UI elements [47-50]. These ap-
proaches have a limitation of not supporting different devices
easily as device screen sizes and resolutions differ widely.

We further assist developers to inspect and identify any Ul
elements in a provider app through DevTool. For example,
a developer can open an Android emulator and click a Ul
element of an activity, at which point DevTool displays the
information on the UI element and the full path to the Ul
element on the activity Ul tree.

Passing Parameters & Retrieving Results

Developers can pass parameters for XTask execution and re-
trieve the results shown in a Ul in the same way that they
interact with the Ul For example, a developer can write an
XTask for purchasing a movie ticket using a theater app and
pass a movie name by using the setText () method targeting
the theater app’s search view. Similarly, she can retrieve a
ticket number on the UI by using the readText () method.

Error Handling

X-Droid API provides callbacks that can catch both visible
and invisible error notifications (e.g., pop-up messages notify-
ing no Internet access, vibrations indicating wrong password
inputs, etc.). X-Droid hijacks Android APIs that could be used
as error notifications such as toasts, notification bar updates,
and vibrations, and invokes corresponding callbacks where
developers can implement their own error handling logic.

X-Droid also provides a callback for handling crash and
ANR (Application Not Responding) errors during borrowed
function execution. To prevent XTask from proceeding in di-
rections unintended by developers, X-Droid provides another
callback that is invoked when it cannot find any registered
activity listener of a newly launched activity.

Optimizing the FPK Size

Since an FPK must be distributed with a developer app, reduc-
ing its size is important to make the app lightweight. X-Droid
provides an FPK size optimization tool, FPK Optimizer, for
that purpose. When a developer runs the tool, it asks her to
select activities in an FPK that are necessary for her app. It
then removes other activities from the FPK and runs a byte-
code optimization tool, ProGuard [51], to remove all classes
and methods that are never referenced.

FPK Optimizer also removes unused resources (e.g., images).
Android apps usually have multiple versions of each resource
for different display configurations (e.g., size and DPI). Since
X-Droid does not display anything, FPK Optimizer removes
all resources except one copy of each resource for default
configuration.

APP EXECUTION WITH X-DROID

Once an app is developed with X-Droid and installed on an
Android device, X-Droid executes the functionality that it
borrows from provider apps. X-Droid’s app execution involves
three components, LibX, XExecutor, and FPK Generator as
shown in Figure 4.

LibX implements X-Droid API and is linked to a developer’s
app at compile time. It communicates with XExecutor to send

Table 1: Available methods in X-Droid API.

(a) Navigation methods implemented by XViewGroup.

(b) Available UI action methods.

[Method Prototype | Description | [Interface | Method Prototype [Description |
int getChildCount() Get the number of children XClickable void click() Click the XView
XView getChildAt(int idx) Get the view at the position XAdapter void clickItem(int idx) Click i-th child

CharSequence text, int flags) a given text

void findViewsWithText(ArrayList<XView> outViews, | Finds the views that contain

XTextReadable | String readText() Read text
String readHint() Read hint text

int indexOfChild(XView child)

Get the position of a child

XTextSettable | void setText(String text) | Set text

Activity Mgmt.
Control Framework

Service
| Ul Framework |<—'

App .
-

Figure 4: X-Droid execution overview.

UI action requests and receive the action results. XExecutor
loads FPKs generated by FPK Generator, receives Ul inter-
action requests from developer’s apps, executes them, and
returns the results. It is designed to provide an illusion that a
developer’s app is providing all functionality (i.e., a single-app
illusion) to users.

With these components, X-Droid provides the following three
benefits desirable for using and testing the app as a prototype.

1. Avoiding OS modification: We design XExecutor to be
a regular Android app that can be installed and run on
any Android device. XExecutor can dynamically load and
execute app functions in X-Droid-compatible FPK files,
generated by FPK Generator. Therefore, prototype apps
developed through X-Droid can be tested on off-the-shelf
Android devices.

2. Providing a single-app illusion: XExecutor is also designed
to avoid user experience (UX) disruption due to app switch-
ing as the Android OS requires an app to be foreground
when executing Ul actions on it. XExecutor provides a new
UI framework and a new activity management framework
that mirror Android’s, and executes a borrowed function
completely in the background.

3. Enforcing privacy and security: Since provider apps are ex-
ecuted within XExecutor, they are isolated from other user-
installed apps as the Android OS isolates each app. In
addition, XExecutor internally isolates a provider app from
other provider apps. It also prevents permission escalation
that might happen while executing borrowed app functions.

LibX: API Library for Developer’s Apps

LibX is a library that provides X-Droid API implementation.
At compile time, a developer must link LibX to the app that
she developed. The main task of LibX is to communicate with
XExecutor to execute borrowed functions. For example, when
a developer’s app creates a new XTask, LibX instructs XEx-
ecutor to load an FPK and launches its main activity; or when
a developer’s app invokes a method that performs a Ul action
for an activity, LibX instructs XExecutor to perform the action
on the activity. LibX also communicates with XExecutor to
invoke callbacks as necessary. For example, it receives the
results of Ul actions from XExecutor and delivers them to the

developer’s app by invoking appropriate callbacks. All com-
munication occurs with IPC between LibX and XExecutor.

Borrowed Function Execution

FPK Generator and XExecutor work in tandem to load and
execute borrowed functions on an Android device. FPK Gen-
erator is an offline tool that uses bytecode instrumentation
techniques [52-58]. It rewrites portions of a provider app to
help XExecutor load and execute app logic. It also allows
a provider to choose the exact functions she wants to share;
using this as input, FPK Generator extracts only the selected
functions from a provider app and packages them into an FPK.
On the other hand, XExecutor handles all run-time issues of
borrowed function execution. Together, they provide a single-
app illusion, handle the execution of a provider app, manage
permissions and isolation, and optimize execution delay.

Providing a Single-App Illusion

In order to provide a single-app illusion to users, FPK Gen-
erator and XExecutor implement two necessary mechanisms.
The first mechanism is emulating Ul interactions for executing
a borrowed function and the second mechanism is convert-
ing all foreground tasks of a provider app into background
tasks. Since Android always allocates a portion of a screen
to a foreground task, if we use only the first mechanism (i.e.,
emulating Ul interactions), a user will see a blank space when
the borrowed functionality is running on XExecutor. Com-
bined with the second mechanism, every aspect of executing
the borrowed functionality is hidden from the users.

Emulating UI Interactions: Emulating Ul interactions consists
of two parts. First, XExecutor provides a new Ul framework
that is a drop-in replacement of the Android UI framework,
composed of 496 Java classes. This new UI framework, called
the X-UI framework, works almost the same as the Android
UI framework; the only differences are that it does not display
anything on a device screen and all UI animations are skipped.
Since a provider app is a regular Android app that does not use
the X-UI framework, FPK Generator rewrites a provider app
and forces it to use our Ul framework. This rewriting process
is straightforward—the X-UI framework uses the exact same
class structure as Android and there is a one-to-one mapping
between every Android Ul class and our UI class. The job of
FPK Generator hence is renaming.

Second, XExecutor mirrors system services that potentially
display some output on a device screen, e.g., Notification Ser-
vice, Layout Inflator Service, etc., and modifies their behavior
so that they do not display anything. FPK Generator also
rewrites the provider app and forces the FPK to use our system
services. This is not a complicated task; Android apps access
all system services via a call to getSystemService(). Thus,

FPK Generator overrides this call and returns our version of a
service whenever the original version is requested.

Converting Foreground Tasks to Background Tasks: The sec-
ond necessary mechanism for providing a single-app illusion
to users is converting foreground tasks of a provider app into
background tasks. On Android, foreground tasks are activ-
ities implemented with the Activity class and background
tasks are services implemented with the Service class. Thus,
in X-Droid, FPK Generator and XExecutor work together to
convert every activity of a provider app into a service. To
do this, XExecutor provides a new class called XActivity
that is a subclass of Service. Although XActivity is a sub-
class of Service, hence runs in the background, it mirrors the
structure of Android’s Activity and emulates the behavior
of Activity. Using XActivity, FPK Generator rewrites the
provider app and converts every Activity to XActivity via
renaming, effectively converting every foreground task into a
background task.

Dynamic Loading of an FPK
We illustrate how X-Droid loads an FPK and executes a bor-
rowed function at run time in two steps.

Step 1: Loading an FPK: XExecutor loads an FPK via
DexClassLoader, which provides the capability of loading
the classes of an app into a different app. In addition, XExecu-
tor loads all resources files (e.g., images and icons) in an FPK.
These resources define custom Ul layouts and styles specific
for a provider app. They are necessary for correct execution
as they are referenced by app logic throughout the lifetime of
a borrowed function. Android typically uses AssetManager
to load resources when it starts an app. However, as XExecu-
tor loads an FPK using DexClassLoader, its app resources
are not automatically loaded. XExecutor thus instantiates a
mirrored AssetManager that loads resources from an FPK.

Step 2: Executing a Borrowed Function: As discussed earlier,
FPK Generator converts every Activity to XActivity so we
can execute original foreground logic in the background. This
is possible because XActivity is a child of Service. The
problem is that an activity and a service on Android have
different lifecycle callbacks, and we cannot simply convert an
activity to a service via renaming and expect it to work. For
example, when an activity starts, onCreate(), onStart(),
and onResume () are invoked; however, when a service starts,
onCreate() and onStartCommand() are invoked. Thus, we
need to resolve these differences.

XExecutor thus has mirrored versions of Android’s Activ-
ity Manager Service (AMS) and ActivityThread that man-
age regular activities on Android and manages XActivity
in the exact same way that Android manages Activity. On
Android, AMS and ActivityThread control the lifecycle of
Activity; AMS orders ActivityThread to launch, resume,
pause, and destroy Activity instances, and ActivityThread
invokes Activity callbacks. XExecutor’s mirrored versions
also perform the same task for XActivity.

Handling Permissions & Isolation
In order to prevent malicious apps from abusing X-Droid,
XExecutor is designed to (i) isolate the execution of borrowed

function from other apps on the same device, (ii) isolate each
execution of a borrowed function from previous or later exe-
cutions, and (iii) enforce developer’s apps and provider apps
to acquire all app permissions required to execute a borrowed
function, in order to prevent permission escalation. We note
that traditional function sharing methods, such as libraries and
sharing via IPC, suffer from these problems [59-61].

For (i), our design naturally isolates a borrowed function from
other user-installed apps since a borrowed function executes
as part of XExecutor. XExecutor is a regular Android app and
by default, Android OS isolates each app.

Regarding (ii), a malicious app might leak private data (e.g.,
search history) created by the previous execution of a bor-
rowed function and left in the storage space for XExecutor. To
prevent such a scenario, XExecutor discards the class loader
that loaded an FPK when XExecutor completes executing
a borrowed function. This cleans up the used memory and
storage while executing the borrowed function for potential
privacy leaks.

For (iii), XExecutor verifies that developer’s apps and provider
apps acquire required permissions before executing sensitive
Android APIs. XExecutor looks up a permission table [62]
for each system API and checks whether a provider app has
specified the permission on its app manifest and a developer’s
app has acquired the permission from Android.

USE CASE SCENARIOS

We present four use cases we have implemented using X-
Droid. Among the four, we use the first one as the main use
case when evaluating X-Droid.

Main Scenario: Password DB Migration

The choice of a function to borrow affects nearly all aspects
of X-Droid, especially what a developer implements and how
X-Droid executes what is implemented; therefore, we evalu-
ate various aspects of X-Droid with one consistent use case
scenario. We carefully select the scenario considering the
following: (i) both a developer’s app and a provider app have
download counts over 100,000; and (ii) both apps are open-
sourced, so that for comparison purposes, we can prototype
an app feature by borrowing code without X-Droid.

We have selected a use case scenario satisfying both aspects
above; password DB migration from a password manager app
to another. Google Play market has tens of different password
manager apps that store user passwords in a database (DB) file
secured by a master password. When a user wants to migrate
from one app to another, she has to manually copy-and-paste
each stored password, as a custom DB file created by one app
is usually unreadable by another app. App developers can help
this process by providing a migration feature, which we imple-
ment for our evaluation using two apps—KeePassDroid [46]
and PasswdSafe [63].

KeePassDroid and PasswdSafe are open-source password man-
ager apps but are not compatible with each other. While
KeePassDroid uses the external storage of Android to store a
password DB file (i.e., other apps can access the file), Pass-
wdSafe cannot properly read it due to KeePassDroid’s unique

X PFileSelect Password Group Entry

1 1 1
L Start_ggType path & B 1ype pw & RE Ciick 15 Ent I
B T ¥
Click “ok” WY ciick “open” |
e Back Key

) Import |

areEn
) Finish |

Figure 5: The execution of a XTask for our main scenario.

file format (KDBX). We have implemented a KDBX-format
DB-import feature by modifying the PasswdSafe app with
X-Droid. With the ‘import KDBX’ feature, users can specify
the file path of a KDBX file, enter the master password of the
KDBX file, and import the file by clicking an ‘import’ button.
When the import button is clicked, our modified PasswdSafe
app leverages KeePassDroid via X-Droid to open the KDBX
file and migrates the password entries to its own DB file of
PasswdSafe. Although KeePassDroid is open-source, we only
used its APK file obtained from Google Play.

Figure 5 shows the operation of XTask utilizing KeePassDroid.
XTask navigates through four activities to open a KDBX file
and reads the entries from it. XTask enters the KDBX file
path and its master password in the FileSelect activity and the
Password activity, respectively. A user must provide both the
file path and the master password, and XTask handles possible
errors of incorrect information by catching Toasts from KeeP-
assDroid. Password activity triggers an asynchronous task for
decrypting the KDBX file and launches the Group activity that
lists password entries in the file when decryption completes.
The decrypted information of each password entry is displayed
at the Entry activity that can be launched by clicking each en-
try listed in the Group activity. XTask navigates to one Entry
activity by emulating a click of an entry in the Group activity
and exports the entry to PasswdSafe’s DB by reading the text
information such as titles, IDs, passwords, and memos. After
an entry is complete, it returns RETURN_TO_PREV_ACTIVITY
from the activity handler callback attached to the Entry activity
to return to the Group activity and import the next entry.

Use Case Scenarios with Google Play Apps
In addition to KeePassDroid, we implemented three other use
cases with apps downloaded from Google Play.

WishList: WishList is an app that helps users create and share
their shopping wish lists. In this scenario, a developer wants
to prototype a new WishList app feature that notifies users
when items in their wish lists appear in local listings. Through
prototyping, she can evaluate how useful notifications would
be when used items become available. We prototyped the new
feature by using WishLocal [64] that shows local used items
listings as a provider app. Our prototype periodically reads
listings on WishLocal and notifies users when there is a match.

TVGuide: In this scenario, a developer wants to prototype
a ‘jump-to-my-favorite’ feature for a TV guide app, which
can automatically switch channels when a user’s favorite TV
show is on. We prototyped this feature by using Universal
TV Remote Control [65], an IR/Wi-Fi TV remote app, as

Table 2: Developer study outcome.
[ID | Android dev. experience | LoC [Time |

P1 | Professional (7 yrs) 5T 80 mins
P2 | Professional (6 yrs) 68*% | 180 mins
P3 | Intermediate 55 90 mins
P4 | Beginner 59 150 mins
P5 | Beginner - -

*P2 could only partially complete the given task.

a provider app. Once a user saves the name of her favorite
show, our prototype searches the channel number from a TV
schedule table and switches channels when the show airs.

RadioAlarm: In this scenario, a developer wants to prototype
an alarm app that wakes users up to their favorite radio chan-
nel. We prototyped this feature by using RadioDroid [66], an
Internet radio streaming app, as a provider app. Our app lets
users to select a favorite radio channel and use it as an alarm.

DEVELOPER STUDY

To evaluate the usability of X-Droid, we conducted an IRB-
approved user study with five Android app developers. Two
are professional Android app developers and three are CS un-
dergraduate students. They were paid $90 for up to three hours
of Android app development. Both professional developers
have more than six years of Android app development expe-
rience. The first participant (P1) has experience developing
a drawing app, a mobile game, and a 3D scanner app. The
second participant (P2) has developed a blockchain wallet app
and an online payment app.

All three undergraduate student participants major computer
science in the same university and have Android app develop-
ing experience, while the quality of the developed apps and
the depth of Android understanding vary widely. We labeled
their development experience by the longest lines of code they
have ever contributed for a single Android project—beginner
(< 1,000 LoC), intermediate (< 10,000 LoC), and expert (>
10,000 LoC). The third participant (P3) is a junior student who
has developed a full research prototype Android app. The
fourth participant (P4) is a senior student who has developed
an object recognition Android app for a mobile app develop-
ment course. The fifth participant (P5) is a junior who has
displayed client information on a map view and lists of an
Android app during an industry internship.

Assuming a scenario where each participant is a developer
of PasswdSafe, we asked them to implement a DB import
function and provided our X-Droid prototype with X-Droid
API documentation. Before the experiment, we explained the
basic mechanism of X-Droid and how to use the provided API.
We provided them with an example implementation of creating
three dummy password entries in PasswdSafe to reduce the
time to understand the source code of PasswsSafe. During the
experiment, we gave no assistance related to implementation,
apart from the instructions given at the beginning.

For each developer, we measured how long one took to com-
plete the task. As Table 2 shows, P1 successfully completed
the task within 80 minutes, requiring only 51 lines of code.
P2 could import one password entry but could not extend it to

multiple entries in time. This is because there was a task that
he wanted to implement, which downcasting (from XView to
XviewGroup) could easily accomplish. However, he did not
use that method but spent most of his time figuring out how to
accomplish the task (without downcasting). According to the
participant, this was due to downcasting being uncommon in
industry practices. P3 completed the task within 90 minutes
by writing 55 lines of code. P4 who has less Android experi-
ence took 150 minutes to complete the task, with 59 lines of
code. P5 had difficulties completing the task, as he barely had
experience with Android’s event-driven programming model.
Despite this, we observed that he had no trouble accessing
provider app’s UI components. He, however, struggled with
activity transitions and callback handling.

Regardless, all five developers, including the last, rated their
API understanding fairly well. According to our analysis,
KeePassDroid is composed of 28,996 lines of Java/C code,
and 10,334 lines must be migrated to accomplish the same task
without X-Droid. This shows that although prior development
experience can influence the outcome, X-Droid API is eas-
ily usable, and X-Droid effectively lightens the development
burden for the given prototyping task.

Through the observation of developer study participants’ app
development process, we learned a few lessons on Ul-based
functionality provisioning and updated X-Droid’s design:

Hidden Program Structure underneath Ul: For interacting
with UI elements, X-Droid API follows Android API’s con-
vention that Android developers are already familiar with. For
instance, to click an item from a dynamic list view, program-
mers should call clickItem(int index) on the list view
as Android API uses onItemClick(int index) callback for
dynamic list views. This is different from how they would
interact with static list views where they should directly call
click() on the item as Android API uses onClick() callback
for each item. P4 stated that he was confused with a dynamic
list with a static list as they are not visually distinguishable.
Thus, to assist developers further, we have revised X-Droid
APIs so both clickItem(int index) and click() work for
both types of list views.

Gap between Using UI as User and Developer: P3 mentioned
that he had difficulty while programming UI actions with
event-driven X-Droid API because he is used to making Ul
actions in sequence. This is an interesting observation but not
a serious drawback of X-Droid’s event-driven API design as
(i) developers can learn how Ul interaction translates into code
segment using DevTool and (ii) P3 successfully accomplished
the given task despite this difficulty.

In our early design of X-Droid, developers should have called
dispatchKeyEvent(int key) to emulate a ‘back’ button to
go back to previous activity similar to the way that users click
a ‘back’ button. P4 suggested that utilizing the return value
of onActivity() callback would be more intuitive as both
clicking ‘back’ button and returning from a callback indicate
no more Ul actions on current activity. We took his suggestion
and added RETURN_TO_PREV_ACTIVITY as a possible return
values of onActivity() callback.

Readability of Auto-Generated Code: We observed that Ul
action code generated by DevTool not only functions as a
UI action record but also serves as an example that devel-
opers might later refer to. As our early design of Dev-
Tool generated code used only getChildAt() to navigate
to a specific Ul element, P4 stated that it was hard to
catch the UI elements that the generated code was interact-
ing with, especially when getChildAt() was chained very
deeply. Therefore, we modified DevTool to properly use
(1) findViewsWithText() that specifies a Ul element with
a text on it and (ii) getDescendantAt () that is equivalent to
calling getChildAt () iteratively but is more compact.

Performance Dependency on the Path of UI Action: Through
the developer study, we found that developers can take differ-
ent Ul action paths to navigate to the same activity. Although
the path of navigation is often deterministic (i.e., it does not
change over different executions of a borrowed function) and
does not affect the correctness of a borrowed function, it im-
pacts the performance of the borrowed function as some navi-
gation paths are simpler and faster than others.

We thus devise a mechanism to skip the execution of a
deterministic activity. We define an activity as determinis-
tic when (i) a borrower app always performs the same Ul
interactions on the activity and (ii) the interactions do not
change any state outside XExecutor (e.g., filling out a static
input form). Since deterministic activities do not have any side
effect, we can remove them safely for optimization as long as
we ensure the correct execution of a borrowed function.

Deterministic activities can be identified automatically
or manually. For automatic identification, we inspect
OnActivitylistener class that implements all Ul actions
to be performed on an activity. If the OnActivitylListener
of an activity is automatically generated by DevTool, the ac-
tivity is deterministic as it is a part of repeating recorded Ul
actions. For manual identification, a developer can tag an
activity by setting an optional ‘isDeterministic’ flag when she
calls setOnActivitylListener () method for the activity.

Once we identify an activity to be deterministic, we cache the
Intent issued by it. On Android, activity is an independently
executable program block that can be launched by issuing an
Intent, which is a message containing complete information
for launching a new activity. By caching the Intent issued by
a deterministic activity, we skip the execution of the activity
and directly launch the next activity.

MICROBENCHMARK

With our X-Droid prototype, we evaluate whether it delivers
its design goals to Android app developers. Our microbench-
mark seeks to answer the following questions. First, what
is the performance of X-Droid when it executes a borrowed
app function? Second, does X-Droid support various off-the-
shelf Android devices? Third, does FPK Optimizer effectively
reduce the size of an FPK? Fourth, does Intent Caching effec-
tively reduce the execution delay of a borrowed app function?

Experiment Setup: We use the main use case scenario of
password DB migration for our evaluation. To run our exper-
iments, we use a Nexus 6 smartphone running Android 6.0.

4000 4,011
1,074 ms: Ul Element Population
= 3000
E 794 ms: User Interaction Emulation
g 2000 332 ms: Activity Lifecycle Management
= 1000 1,066 ms: Comm. Delay between LibX and XExecutor
0 745 ms: Etc. (Waiting for async. jobs, file loading, ...)

Figure 6: XTask execution delay breakdown.

Table 3: Size of FPKs and their original APKs. (MB)
\ | KeePassDroid | WishLocal | TVRemote | RadioDroid |
APK | 3.6 6.9 7.1 4
FPK | 2.4 (-33.3%) 2.7 (-60.9%) | 5(-29.6%) | 2.5 (-37.5%)

We put ten entries in a KDBX file at the default DB file path
of KeePassDroid. We generated KeePassDroid FPK file using
our FPK Generator and KeePassDroid APK file downloaded
from Google Play.

Run-Time Performance: To evaluate the run-time perfor-
mance of X-Droid, we measure the KDBX file import delay.
KDBX file import took 4,368 ms, out of which 4,011 ms
comes from XTask execution. XExecutor initialization took
248 ms, which is a one-time delay incurred when the FPK file
is loaded to XExecutor. To understand the source of the XTask
execution delay, we profiled XExecutor and Figure 6 shows
the result. XTask execution delay is 4,011 ms and the UI ele-
ment population consumes the largest portion with 1,074 ms.
The communication delay between LibX and XExecutor is the
next largest with 1,066 ms.

This run-time execution delay is acceptable as password DB
migration is just a one-time job. However, there is room for
optimization; one possible method is batching IPC calls to
reduce the delay between LibX and XExecutor, which we
leave as our future work.

Heterogeneous Hardware & OS Versions: To investigate
whether borrowed functions through X-Droid can run on
off-the-shelf Android devices, we test the import KDBX
feature on four different Android devices—Nexus 5X running
Android 8.1.0, Galaxy J7 running Android 7.0, Nexus 6
running Android 6.0, and Nexus 9 tablet running Android 6.0.
We have verified that the import KDBX feature backed by
X-Droid successfully runs on these devices.

Effectiveness of FPK Optimization: To minimize the storage
and distribution overhead of FPK, X-Droid provides FPK
Optimizer for developers. We tested FPK Optimizer with our
four use case scenarios. As shown in Table 3, the optimizer
produces much smaller FPKs than their original APKs.

Impact of Intent Caching: To provide efficient XTask execu-
tion, our Intent Caching skips redundant activity listener ex-
ecutions. To evaluate the efficiency of Intent Caching, we
implemented a new version of XTask for the import KDBX
feature. Different from the previous XTask described with the
main use case scenario, the new version intentionally reads
only one password entry; thus, importing all passwords re-

=D FileSelect Password Group Entry

1
L Start_gy Type path & B Type pw & NI
Click “ok Click “open” |

: Optimization Target m
ET» ; :

: i Y Import |
start § _Finish |

Click 10t Ent

Figure 7: The execution sequence of a XTask for intent caching
microbenchmark.

quires the creation and execution of multiple XTasks, one for
each password to import. Although this has an obvious perfor-
mance drawback of creating and executing multiple XTasks, it
might be a preferred implementation option for its simplicity.
Figure 7 depicts this implementation.

To evaluate how our Intent Caching improves the performance
of this new version, we tag activity listeners on the FileS-
elect activity and the Password activity as deterministic, as
described UI actions are repeated across different XTasks and
do not vary.

The execution delay of this new import KDBX implementa-
tion is 11.29 seconds, which is 2.58 times slower than the
default implementation without our optimization (4.37 sec-
onds), due to redundant UI actions. When we enable Intent
Caching, the execution delay is reduced to 5.39 seconds as it
effectively skips redundant UI actions.

DISCUSSION

Limitations: Although X-Droid optimizes its UI emulation
(e.g., skipping animations), Ul emulation overhead induces
considerable delay on borrowed function execution as shown
in the Microbenchmark section. X-Droid is still useful for
many prototyping tasks where development efficiency is more
important than performance; however, the use of X-Droid
might be limited when prototypes require responsiveness.

Also, the current version of X-Droid does not support reading
images, sounds, or videos from UI elements or writing data
on microphone, camera, or sensor inputs of provider apps.
This does not entirely prevent X-Droid from borrowing app
functions that require multimedia input (e.g., face recognition
from a specified image file) but limits the coverage. X-Droid
also does not support customized UI: e.g., mobile game Ul
managed by custom game engine.

Use of External Resources: During a borrowed function ex-
ecution, the borrowed function might use external resources
(e.g., aremote server) of a provider app. Since the owner of the
provider app cannot distinguish X-Droid from regular users,
external resources could be abused when a prototype executes
a borrowed function too frequently. X-Droid could employ a
rate-limit strategy to reduce the impact of such misuse.

Legality: Based on our understanding and legal consultation,
we believe that the use of X-Droid would not violate any
legal issue under the “fair use” doctrine if the following three

Table 4: Motivation for sharing functions and code.

[Reasons [Q1 [Q2]
Sharing knowledge and skills 82.8% | 70.6%
Improving products of other developers 55.2% | 64.7%
Learning and developing new skills 69% | 56.9%
Improving my job opportunities 46.6% | 37.3%
Belief that software should be free, not proprietary | 36.2% | 23.5%
Distributing not marketable software products 8.6% | 9.8%
Concern about large software companies’ influence | 5.2% | 3.9%

conditions are satisfied (here, we assume that a developer D
uses X-Droid to incorporate an existing app A’s feature).

First, app A’s feature is not protected by patent laws. Second,
app A’s terms of use does not explicitly prohibit reverse engi-
neering. Third, assuming app A is distributed through Google
Play, developer D uses X-Droid for her own educational pur-
pose to learn about app A’s feature.

To fully incorporate the feature for commercial purposes, de-
veloper D completely disregards the prototype and implements
the feature from scratch. The cleanest way for ensuring this
would be taking the cleanroom development strategy; a dif-
ferent developer (developer E) develops the feature without
copying anything from the prototype or developer D. We em-
phasize however that our discussion here is not to be taken as
legal advice in any way.

X-Droid for Apps to Release: If permitted by original devel-
opers, X-Droid could be used to develop a production app,
not just a prototype. Among the issues in releasing apps de-
veloped through X-Droid (e.g., how developers can control
any side effect of another app), one issue could be whether the
developers of provider apps would donate their app functions
for others. To find out if developers are willing to share their
apps’ functions, we sent online surveys to the developers of
popular open-source third-party libraries for Android [67] and
received 58 replies.

We asked those developers QI: what is the motivation for
developing third party libraries. We also asked them if they
would share the functionality of their apps with others if they
owned an app, and 51 of 58 answered that they would. To
these 51 developers, we asked Q2: why would they share their
app functionality. We provided options based on a prior survey
of open-source developers [68] and allowed the participants to
select multiple options.

Table 4 shows the statistics of their responses. It shows that
motivations for developing open-source software are mostly
to share and learn knowledge and skills, improve others’ prod-
ucts, and improve job opportunities. All these goals could also
be achieved by sharing app functions. This similarity is re-
flected on the answers to the second question, as the statistics
for the two questions show high similarity.

In summary, we found that (1) the majority of open-source
community members contribute to the community for altruistic
inner motivations, and (2) their motivations can possibly be
translated into their donation of app functions.

CONCLUSIONS

We presented X-Droid that empowers developers to quickly
produce functional prototypes of an Android app. X-Droid
repurposes the Ul of an Android app as an interface where
developers define functions to import, and provides LibX and
DevTool to further ease the development effort. X-Droid
does not require the developers to understand the function
implementation details or have access to source code for other
Android apps where imported functions are implemented. We
evaluated X-Droid with microbenchmarks and showed that
X-Droid has acceptable performance and supports various
Android devices and versions. We conducted a usability study
with five Android app developers and they indicated that X-
Droid provides an API that is usable and easy to understand.
With X-Droid, a developer has imported an another app’s
function that requires 10,334 lines of Java code by writing
only 51 lines of Java code. We believe X-Droid makes a large
step toward new mobile app prototyping where developers can
quickly and easilty produce functional prototypes.

ACKNOWLEDGMENTS

We thank Chunjong Park for his early contribution. This re-
search was supported in part by Next-Generation Information
Computing Development Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry
of Science and ICT (NRF-2017M3C4A7083534), the Inter-
national Cooperative R&D program funded by the Ministry
of Trade, Industry and Energy(MOTIE) and Korea Institute
for Advancement of Technology(KIAT) (N0002099), and the
National Science Foundation, CNS-1350883 (CAREER) and
CNS-1618531.

REFERENCES
[1] Steven D Tripp and Barbara Bichelmeyer. Rapid
prototyping: An alternative instructional design strategy.
Educational Technology Research and Development,
38(1):31-44, 1990.

[2] Joel Brandt, Philip J Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R Klemmer. Two studies of
opportunistic programming: interleaving web foraging,
learning, and writing code. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 1589-1598. ACM, 2009.

[3] Xiong Zhang and Philip J Guo. Fusion: Opportunistic
web prototyping with ui mashups. In The 31st Annual
ACM Symposium on User Interface Software and
Technology, pages 951-962. ACM, 2018.

[4] Ingbert R Floyd, M Cameron Jones, Dinesh Rathi, and
Michael B Twidale. Web mash-ups and patchwork
prototyping: User-driven technological innovation with
web 2.0 and open source software. In 2007 40th Annual
Hawaii International Conference on System Sciences
(HICSS’07), pages 86-86. IEEE, 2007.

[5] M Cameron Jones, Ingbert R Floyd, and Michael B
Twidale. Patchwork prototyping with open source
software. In Software Applications: Concepts,
Methodologies, Tools, and Applications, pages
1641-1656. IGI Global, 2009.

[6] Balsamiq. rapid, effective and fun wireframing software.

https://balsamiq.com/, 2019.

[7] Prototype faster, smarter and easier with mockplus!
https://www.mockplus.com/?r=trista, 2019.

[8] Wireframe.cc - minimal wireframing tool.
https://wireframe.cc/, 2019.

[9] Marvel app. https://marvelapp.com/, 2019.

[10] Invision | digital product design, workflow &
collaboration. https://www. invisionapp.com/, 2019.

[11] Uxpin | ui design and prototyping tool.
https://www.uxpin.com/, 2019.

[12] Allen Cypher and Daniel Conrad Halbert. Watch what I

do: programming by demonstration. MIT press, 1993.

[13] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers.
Sugilite: creating multimodal smartphone automation by
demonstration. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems,
pages 6038-6049. ACM, 2017.

[14] Tanzirul Azim, Oriana Riva, and Suman Nath. ulink:
Enabling user-defined deep linking to app content. In
Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and
Services (MobiSys), pages 305-318. ACM, 2016.

Leshed, Gilly and Haber, Eben M and Matthews, Tara
and Lau, Tessa. CoScripter: automating & sharing
how-to knowledge in the enterprise. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, pages 1719—1728. ACM, 2008.

[16] Nichols, Jeffrey and Lau, Tessa. Mobilization by
demonstration: using traces to re-author existing web
sites. In Proceedings of the 13th international
conference on Intelligent user interfaces, pages
149-158. ACM, 2008.

[17] Fujima, Jun and Lunzer, Aran and Hornbk, Kasper and
Tanaka, Yuzuru. Clip, connect, clone: combining
application elements to build custom interfaces for
information access. In Proceedings of the 17th annual
ACM symposium on User interface software and
technology, pages 175-184. ACM, 2004.

[15

—

[18] Domenico Amalfitano, Anna Rita Fasolino, Porfirio

Tramontana, Salvatore De Carmine, and Atif M Memon.

Using gui ripping for automated testing of android
applications. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software
Engineering (ASE), pages 258-261. ACM, 2012.

[19] Young-Min Baek and Doo-Hwan Bae. Automated
model-based android gui testing using multi-level gui
comparison criteria. In Proceedings of the 31st
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 238-249. ACM,
2016.

Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond,
and Ramesh Govindan. Puma: programmable

[20

—_

ui-automation for large-scale dynamic analysis of
mobile apps. In Proceedings of the 12th annual
international conference on Mobile Systems,
Applications, and Services (MobiSys), pages 204-217.
ACM, 2014.

[21] Chieh-Jan Mike Liang, Nicholas D Lane, Niels
Brouwers, Li Zhang, Borje F Karlsson, Hao Liu, Yan
Liu, Jun Tang, Xiang Shan, Ranveer Chandra, et al.
Caiipa: Automated large-scale mobile app testing
through contextual fuzzing. In Proceedings of the 20th
annual international conference on Mobile computing
and networking (MobiCom), pages 519-530. ACM,
2014.

[22] Aravind Machiry, Rohan Tahiliani, and Mayur Naik.
Dynodroid: An input generation system for android
apps. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering (FSE), pages
224-234. ACM, 2013.

[23] Lenin Ravindranath, Suman Nath, Jitendra Padhye, and
Hari Balakrishnan. Automatic and scalable fault
detection for mobile applications. In Proceedings of the
12th annual international conference on Mobile
Systems, Applications, and Services (MobiSys), pages
190-203. ACM, 2014.

[24] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming
Yang, Yao Yao, Geguang Pu, Yang Liu, and Zhendong
Su. Guided, stochastic model-based gui testing of
android apps. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering
(FSE), pages 245-256. ACM, 2017.

[25] Selenium - web browser automation.
https://www.seleniumhq.org/, 2019.

[26] Helium. https://heliumhq.com/, 2019.
[27] Scrapy. https://scrapy.org/, 2019.

[28] Stuerzlinger, Wolfgang and Chapuis, Olivier and
Phillips, Dusty and Roussel, Nicolas. User interface
facades: towards fully adaptable user interfaces. In
Proceedings of the 19th annual ACM symposium on
User interface software and technology, pages 309-318.
ACM, 2006.

Nichols, Jeffrey and Hua, Zhigang and Barton, John.
Highlight: a system for creating and deploying mobile
web applications. In Proceedings of the 21st annual
ACM symposium on User interface software and
technology, pages 249-258. ACM, 2008.

[29

—

[30] Rob Ennals and David Gay. User-friendly functional
programming for web mashups. In ACM SIGPLAN
Notices, volume 42, pages 223-234. ACM, 2007.

[31] James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher,
and Tessa A Lau. End-user programming of mashups
with vegemite. In Proceedings of the 14th international

conference on Intelligent user interfaces, pages 97-106.
ACM, 2009.

https://balsamiq.com/
https://www.mockplus.com/?r=trista
https://wireframe.cc/
https://marvelapp.com/
https://www.invisionapp.com/
https://www.uxpin.com/
https://www.seleniumhq.org/
https://heliumhq.com/
https://scrapy.org/

[32] Jeffrey Wong and Jason I Hong. Making mashups with
marmite: towards end-user programming for the web. In
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 1435-1444. ACM,
2007.

[33] Pokress, Shaileen Crawford and Veiga, José Juan
Dominguez. MIT App Inventor: Enabling personal
mobile computing. Proceedings of PRoMoTo 2013,
2013.

[34] Thunkable.com: Drag and Drop Mobile App Builder for
i0S and Android. https://thunkable.com/, 2019.

[35] Parallel space. http://parallel-app.com/, 2019.

[36] Parallel accounts. https://play.google.com/store/apps/
details?id=com.in.parallel.accounts, 2019.

[37] Go multiple - parallel account. https://play.google.com/
store/apps/details?id=com. jiubang.commerce.gomultiple,

2019.

[38] Do multiple - unlimited parallel account.
https://play.google.com/store/apps/details?id=com.
polestar.domultiple, 2019.

[39] Dr. clone: Parallel accounts, dual app, 2nd account.
https://play.google.com/store/apps/details?id=com.
trendmicro.tmas, 2019.

[40] Dynamicapk. https://github.com/CtripMobile/DynamicAPK,
2019.

[41] DI: dynamic load framework for android.

https://github.com/singwhatiwanna/dynamic-load-apk,
2019.

[42] Android dynamic loader.
https://github.com/mmin18/AndroidDynamicLoader, 2019.

[43] Android pluginmanager.
https://github.com/houkx/android-pluginmgr, 2019.

[44] Droid plugin. https://github.com/Qihoo360/DroidPlugin,
2019.

[45] Understand the activity lifecycle.
https://developer.android.com/guide/components/
activities/activity-lifecycle, 2019.

[46] Brian Pellin. Keepassdroid.
http://www.keepassdroid.com/, 2019.

[47] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and
Todd Millstein. Reran: Timing-and touch-sensitive
record and replay for android. In Software Engineering
(ICSE), 2013 35th International Conference on, pages
72-81. IEEE, 2013.

[48] Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li.
Mobiplay: A remote execution based record-and-replay
tool for mobile applications. In Proceedings of the 38th

International Conference on Software Engineering
(ICSE), pages 571-582. ACM, 2016.

[49] Matthew Halpern, Yuhao Zhu, Ramesh Peri, and
Vijay Janapa Reddi. Mosaic: cross-platform
user-interaction record and replay for the fragmented
android ecosystem. In Performance Analysis of
Systems and Software (ISPASS), 2015 IEEE
International Symposium on, pages 215-224. IEEE,
2015.

[50] Monkey runner. https://developer.android.com/studio/
test/monkeyrunner/index.html, 2019.

[51] Proguard, the open source optimizer for java bytecode.
https://www.guardsquare.com/en/products/proguard, 2019.

[52] Sharath Chandrashekhara, Taeyeon Ki, Kyungho Jeon,
Karthik Dantu, and Steven Y Ko. Bluemountain: An
architecture for customized data management on mobile
systems. In Proceedings of the 23rd Annual
International Conference on Mobile Computing and
Networking (MobiCom), pages 396—408. ACM, 2017.

[53] Taeyeon Ki, Alexander Simeonov, Bhavika Pravin Jain,
Chang Min Park, Keshav Sharma, Karthik Dantu,
Steven Y Ko, and Lukasz Ziarek. Reptor: Enabling api
virtualization on android for platform openness. In
Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and
Services (MobiSys), pages 399-412. ACM, 2017.

[54] Chris Lattner and Vikram Adve. Llvm: A compilation
framework for lifelong program analysis &
transformation. In Proceedings of the international
symposium on Code generation and optimization:
feedback-directed and runtime optimization (CGO),
page 75. IEEE Computer Society, 2004.

[55] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal,
Ratul Mahajan, Ian Obermiller, and Shahin Shayandeh.
Appinsight: Mobile app performance monitoring in the
wild. In OSDI, volume 12, pages 107-120, 2012.

[56] William Enck, Peter Gilbert, Seungyeop Han, Vasant
Tendulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid:
an information-flow tracking system for realtime privacy
monitoring on smartphones. ACM Transactions on
Computer Systems (TOCS), 32(2):5, 2014.

[57] Steven Arzt, Siegfried Rasthofer, and Eric Bodden.
Instrumenting android and java applications as easy as
abc. In International Conference on Runtime
Verification (RV), pages 364—-381. Springer, 2013.

[58] Haichen Shen, Aruna Balasubramanian, Anthony
LaMarca, and David Wetherall. Enhancing mobile apps
to use sensor hubs without programmer effort. In
Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing
(UbiComp), pages 227-238. ACM, 2015.

[59] Mohammed Rangwala, Ping Zhang, Xukai Zou, and
Feng Li. A taxonomy of privilege escalation attacks in
android applications. International Journal of Security
and Networks, 9(1):40-55, 2014.

https://thunkable.com/
http://parallel-app.com/
https://play.google.com/store/apps/details?id=com.in.parallel.accounts
https://play.google.com/store/apps/details?id=com.in.parallel.accounts
https://play.google.com/store/apps/details?id=com.jiubang.commerce.gomultiple
https://play.google.com/store/apps/details?id=com.jiubang.commerce.gomultiple
https://play.google.com/store/apps/details?id=com.polestar.domultiple
https://play.google.com/store/apps/details?id=com.polestar.domultiple
https://play.google.com/store/apps/details?id=com.trendmicro.tmas
https://play.google.com/store/apps/details?id=com.trendmicro.tmas
https://github.com/CtripMobile/DynamicAPK
https://github.com/singwhatiwanna/dynamic-load-apk
https://github.com/mmin18/AndroidDynamicLoader
https://github.com/houkx/android-pluginmgr
https://github.com/Qihoo360/DroidPlugin
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
http://www.keepassdroid.com/
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
https://www.guardsquare.com/en/products/proguard

[60] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, and Marcel Winandy. Privilege escalation
attacks on android. In international conference on
Information security, pages 346-360. Springer, 2010.

[61] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy
Erickson, and Hao Chen. Investigating user privacy in
android ad libraries. In Workshop on Mobile Security
Technologies (MoST), volume 10, 2012.

[62] Michael Backes, Sven Bugiel, Erik Derr, Patrick D
McDaniel, Damien Octeau, and Sebastian Weisgerber.
On demystifying the android application framework:
Re-visiting android permission specification analysis. In

USENIX Security Symposium, pages 1101-1118, 2016.

[63] Password safe. https://pwsafe.org/, 2019.

[64] Wish local.
https://wish-local-buy-sell.en.softonic.com/android,

2019.

[65] Universal tv remote control.
https://play.google.com/store/apps/details?id=
codematics.universal.tv.remote.control, 2019.

[66] Radiodroid 2. https://play.google.com/store/apps/
details?id=net.programmierecke.radiodroid2, 2019.

[67] CodePath. Must have libraries. https://github.com/
codepath/android_guides/wiki/Must-Have-Libraries, 2019.

[68] Rishab A Ghosh, Ruediger Glott, Bernhard Krieger, and
Gregorio Robles. Free/libre and open source software:
Survey and study, 2002.

https://pwsafe.org/
https://wish-local-buy-sell.en.softonic.com/android
https://play.google.com/store/apps/details?id=codematics.universal.tv.remote.control
https://play.google.com/store/apps/details?id=codematics.universal.tv.remote.control
https://play.google.com/store/apps/details?id=net.programmierecke.radiodroid2
https://play.google.com/store/apps/details?id=net.programmierecke.radiodroid2
https://github.com/codepath/android_guides/wiki/Must-Have-Libraries
https://github.com/codepath/android_guides/wiki/Must-Have-Libraries

	Introduction
	Related Work
	UI-based Functionality Provisioning
	Modular Programming of Mobile Apps
	Alternative Forms of Android App Execution

	X-Droid Overview
	Programming by Demonstration
	App Development with X-Droid
	XTask
	Navigating through UI Objects
	Passing Parameters & Retrieving Results
	Error Handling
	Optimizing the FPK Size

	App Execution with X-Droid
	LibX: API Library for Developer's Apps
	Borrowed Function Execution
	Providing a Single-App Illusion
	Dynamic Loading of an FPK

	Handling Permissions & Isolation

	Use Case Scenarios
	Main Scenario: Password DB Migration
	Use Case Scenarios with Google Play Apps

	Developer Study
	Microbenchmark
	Discussion
	Conclusions
	Acknowledgments
	References

