
AQuantitative Analysis of System Bottlenecks in Visual SLAM
Sofiya Semenova∗

University at Buffalo
sofiyase@buffalo.edu

Steven Y. Ko
Simon Fraser University

steveyko@sfu.ca

Yu David Liu
SUNY Binghamton

davidl@binghamton.edu

Lukasz Ziarek
University at Buffalo
lziarek@buffalo.edu

Karthik Dantu
University at Buffalo
kdantu@buffalo.edu

Abstract
Visual SLAM systems are concurrent, performance-critical sys-

tems that respond to real-time environmental conditions and are
frequently deployed on resource-constrained hardware. Previous
SLAM frameworks have primarily focused on algorithmic advances
and their systems core has largely remained unchanged. In turn,
SLAM systems suffer from performance problems that could be
alleviated with improved systems design. In this paper, we present
a quantitative analysis of the systems challenges to building con-
sistent, accurate, and robust SLAM systems in the face of concur-
rency, variable environmental conditions, and resource-constrained
hardware. We identify three interconnected challenges on systems
design — timeliness, concurrency, and context awareness – and clarify
their effects on performance.

CCS Concepts
• Computer systems organization → Embedded and cyber-
physical systems; • Human-centered computing→ Ubiqui-
tous and mobile computing; • Computing methodologies→
Vision for robotics.
ACM Reference Format:
Sofiya Semenova, Steven Y. Ko, Yu David Liu, Lukasz Ziarek, and Karthik
Dantu. 2022. A Quantitative Analysis of System Bottlenecks in Visual SLAM.
In The 23rd International Workshop on Mobile Computing Systems and Appli-
cations (HotMobile ’22), March 9–10, 2022, Tempe, AZ, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3508396.3512882

1 Introduction
Several classes of applications such as mobile augmented reality

and autonomous driving require a 3-D map of the environment
for accurate functioning. Simultaneous Localization and Mapping
(SLAM) is a software framework that builds a map of an environ-
ment from sensor data while traversing through the environment
and simultaneously localizing the mobile device within the map.
Modern SLAM systems are visual and use monocular, RGB-D, or
stereo camera frames, potentially with inertial information. Over
the last decade, several Visual SLAM systems have been proposed
to improve map and localization accuracy, such as KinectFusion
[9], ORB-SLAM2 [8], ORB-SLAM3 [3], OpenVINS [5] and Kimera

∗Contact author
†This project is sponsored by NSF Awards CNS-1823260, CNS-1823230, CNS-

1846320 and SHF-1749539.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotMobile ’22, March 9–10, 2022, Tempe, AZ, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9218-1/22/03. . . $15.00
https://doi.org/10.1145/3508396.3512882

[11]. There has been significant interest and rapid progress in the
robotics and computer vision communities on algorithmic innova-
tions for accurate localization and mapping. New systems such as
ORB-SLAM3, OpenVINS and Kimera have a similar pipeline for
map construction — a demonstration of the algorithmic maturity
in state-of-the-art SLAM frameworks.

Recently, there has beenwork on offloading SLAM [1, 12] tasks to
edge servers for performance. However, the view of SLAM frame-
works as performance-critical software systems is not systemati-
cally explored. This is unfortunate because SLAM algorithms are
most commonly deployed on software/hardware ecosystems with
constrained resources and stringent performance requirements.
In this paper, we counterpose the algorithm-oriented SLAM re-
search with a systems-oriented perspective. We identify a number
of systems challenges that cause suboptimal operations of SLAM
frameworks, based on our years of experimentation. We believe
these challenges deserve exposure in the mobile systems commu-
nity, whose shared knowledge may systematically address these
challenges and strengthen next-generation SLAM-based software
stacks.

1.1 Systems Challenges in SLAM
Timeliness. The mapping and localization information generated
in SLAM systems are used to aid real-time applications such as
rendering virtual objects in AR or avoiding obstacles during robot
navigation; these applications therefore require SLAM to adhere
to tight timeliness constraints. Typical SLAM pipelines process
incoming images, track the device’s location using the processed
image data, insert new location information into a global map,
and optimize the map structure. Within this pipeline, each task
has timeliness requirements that affect the ability of the entire
system to meet its timeliness constraints and generate accurate
mapping and localization information. To keep up with real-time
camera streams, SLAM systems must process incoming images as
fast as they arrive. To avoid localization error (and failure), SLAM
systems must avoid dropping camera frames and must keep the
global map up-to-date with new location information. To perform
as quickly and accurately as possible, SLAM systems must perform
map optimization, which refines the map by removing redundant
data and rectifies error accumulation, frequently.
Concurrency. Most popular SLAM systems split the pipeline
into concurrent modules that correspond to the tasks listed above.
However, these modules perform computationally heavy opera-
tions which frequently and primarily access, refine, and add to the
shared data structures that comprise the global map. Current SLAM
systems manage shared memory accesses through course-grained
locks and by implementing a drop mechanism wherein modules
drop or minimally process tasks if other modules are accessing
the map or if the module has too much queued work. These drops
curtail the total load on the system but lead to missing map and
localization data, which in turn result in lowered accuracy and

https://doi.org/10.1145/3508396.3512882
https://doi.org/10.1145/3508396.3512882

HotMobile ’22, March 9–10, 2022, Tempe, AZ, USA Semenova, et al.

Loop Closing QueueNew KeyFrame Queue

Full Bundle Adjustment Update Map

Full Bundle Adjustment

Place Recognition Global MapCamera Frame
Incoming Frame Queue

ORB Feature Detection

Tr
ac

ki
ng Relocalization

Create KeyFrame DecisionTrack Local Map
Incoming Frame Queue New KeyFrame Queue

Pose Prediction

KeyFrame Insertion Recept MapPoints Culling New MapPoints Creation

Lo
ca

l
M

ap
pi

ng

Query Database to
Detect Loop Compute SE3 Loop Fusion Optimize Essential Graph

Lo
op

C

lo
si

ng Loop Closing Queue

Further Optimization

Visual VocabularyRecognition Database MapPoints KeyFrames Covisibility GraphSpanning Tree

R
ea

d
Fr

am
es

Figure 1: ORB-SLAM2 System Architecture. Each module (shown in a different color) is implemented as a separate thread. The
visual vocabulary and recognition database are pretrained. All modules interact with the Global Map.

unpredictable results. As we observed, poorly designed concurrent
access to the global map data structure is a major bottleneck in
achieving performance scalability.
Context Awareness. Further, the execution of SLAM systems as
a whole are dependent on the conditions of the real world, which
are highly variable and unknowable in advance. These conditions
include device velocity, whether movement is rotational or transla-
tional [2, 10] , and the novelty of the device’s current location in the
context of the entire explored environment. Variations in real-time
conditions drastically affect the operation of the system and the im-
portance of each module/task. Despite this, current SLAM systems
indiscriminately drop data that may affect performance and accu-
racy in order to maximize throughput of all modules. Instead, SLAM
systems would benefit from a more “intelligent" way to incorporate
real-world, real-time conditions into their decision-making, so that
the right task is being performed at the right time.

1.2 Contributions
Previous SLAM frameworks have focused on algorithmic ad-

vancements in the SLAM pipeline, but have largely kept the struc-
ture of their systems unchanged. Through years of experimenta-
tion, we find that SLAM systems suffer from performance problems
whose solutions may come from systems design.

To the best of our knowledge, this paper is the first work to
quantitatively and systematically demonstrate and analyze systems
challenges faced in SLAM systems. It is our hope that this work
can serve as a bridge, inspiring computer systems researchers to
improve SLAM design for efficient operation. As a key theme, this
paper attempts to elucidate the interconnected relationship among
the three challenges we identified earlier. In a nutshell, both concur-
rency and context awareness have significant impact on timeliness,
which in turn affects accuracy of function.

2 Experimental Setup
All data reported in this paper result from experiments with

ORB-SLAM2 [8] on two devices. The first device is an Nvidia Jetson
TX2 (Dual-Core NVIDIA Denver and Quad-Core ARM Cortex-A57
CPUs, 8GB Memory), which we use as the resource-constrained
mobile device. The second device is a System76 Galago Pro laptop
(Dual-Core Intel Core i7-7500U CPU, 32GB Memory), which is
representative of a service robot navigating inside a building. Both
devices run Ubuntu 18.04 LTS.

We used three datasets — two indoor sequences collected on our
campus (Jarvis and Bell) and the 00 sequence of the KITTI dataset
[4]. The Jarvis and Bell sequences primarily consist of slow, linear
movement of a Turtlebot-2 through an indoor environment with
occasional angular movement, and run at 15fps. The KITTI dataset
consists of faster, varied vehicular movement through an outdoor
environment (city streets), and runs at 10fps.

3 Visual SLAM Overview
In this section, we will describe the functionality of a typical

Visual SLAM system. For this, we will refer mostly to ORB-SLAM2,
a popular open-source Visual SLAM system that has been in use
for a few years. While our focus is on ORB-SLAM2, most modern
SLAM systems follow a similar architecture and design for basic
mapping and localization. However, some newer systems provide
additional functionality, such as semantic mapping in Kimera and
multi-map reasoning in ORB-SLAM3. To this end, our description
captures the essential functions of a basic Visual SLAM system.

A Visual SLAM pipeline consists of three modules – Tracking,
Local Mapping, and Loop Closing – all performing work on the map.
Figure 1 shows the ORB-SLAM2 architecture. Each module executes
as a separate thread and all have shared access to the global map.

The Tracking module is responsible for reading the images from
an input video stream, extracting ORB features from each im-
age, matching these features to corresponding ones in the current
KeyFrame, and using these correspondences to determine the odom-
etry with regard to the KeyFrame. Additionally, if the percentage
of correspondences is low, it adds the extracted features as a new
KeyFrame in the map. If this decision is made, it sends the extracted
features to Local Mapping for further processing. This module should
run on every image received from the camera.

The Local Mapping module is responsible for further optimiza-
tion of the map given an input KeyFrame by: culling recently-
created MapPoints that are not visible from a significant number
of KeyFrames, creating new MapPoints by triangulating features
from KeyFrames connected to the new KeyFrame, performing Local
Bundle Adjustment to optimize the poses of the new KeyFrame, its
connected KeyFrames, and all MapPoints observed by them, and
finally culling redundant KeyFrames. Local Mapping runs for every
added KeyFrame to the global map. This occurs roughly once every
6-10 images received from the camera on our dataset.

AQuantitative Analysis of System Bottlenecks in Visual SLAM HotMobile ’22, March 9–10, 2022, Tempe, AZ, USA

Table 1: Effective execution times of each of the modules on the KITTI dataset, for two different frame rates. Input frequency is
the frequency of incoming data into each module’s queue. Since modules can drop data, throughput is the frequency of data
that has been processed. Relocalization and Loop Closing do not occur periodically.

Jetson, 10 fps Laptop, 10 fps

Module Input Frequency Throughput Duration Input Frequency Throughput Duration
Tracking 10 fps 9 ± 1 fps 103 ± 21 ms 10 fps 9.5 ms ± 0.7 fps 41 ± 17 ms
Relocalization - - 178 ± 90 ms - - 71 ± 23 ms
Local Mapping 1.1 ± 1.1 KFps 1.1 ± 1.1 KFps 417 ± 235 ms 2.7 ± 1.7 KFps 2.7 ± 1.7 KFps 205 ± 103 ms
Loop Closing - - 1306 ms - - 858 ± 202 ms

Jetson, .5 fps Laptop, .5 fps

Module Input Frequency Throughput Duration Input Frequency Throughput Duration
Tracking 0.5 fps 0.5 fps 138 ± 221 ms 0.5 fps 0.5 fps 69 ± 46 ms
Relocalization - - - - - -
Local Mapping 0.3 ± 0.5 KFps 0.3 ± 0.5 KFps 1757 ± 772 ms 0.4 ± 0.5 KFps 0.4 ± 0.5 KFps 566 ± 301 ms
Loop Closing - - 3611 ± 6147 ms - - 4367 ± 1322 ms

The final module, Loop Closing, searches for loops for every in-
serted KeyFrame. When a loop is detected, it finds the accumulated
drift in the loop, aligns both sides of the loop, fuses duplicate points,
and optimizes the pose graph by evenly distributing the accumulated
drift across the length of the loop. Lastly, it spawns a temporary
thread to perform full bundle adjustment to further optimize the
map. Loop closing occurred once in the 30min dataset on the Jetson
and twice on the laptop for the target frame rate (10fps).

All described modules run in a continuous loop on input from
their respective queues. In Figure 1, within each module, the solid
arrows indicate the next task, dotted arrows indicate enqueue and
dequeue operations, and bolded tasks indicate terminal states, after
which the module will start again on new data.

4 The Timeliness Challenge
The nature of the SLAM workload is sequential — control flows

from Tracking to Local Mapping to Loop Closing. To improve over-
all timeliness, a typical pipeline executes these modules concur-
rently. This allows Tracking to work on the next image while Local
Mapping is processing the previous KeyFrame. While such pipelin-
ing provides overall efficiency, without proper scheduling the mod-
ules interfere with each other during shared access of the global
map, resulting in inefficient operation.
Timely Frame Processing. The tracking thread is responsible for
reading incoming video stream data, localizing the incoming frame
against the map, and optionally choosing to incorporate the frame
into the map as a KeyFrame. Tracking runs in a loop, processing
incoming camera images as quickly as possible. If incoming image
frames arrive faster than Tracking can process them, it will fall
behind and start dropping images due to queue overflow.

Dropping images can have varying impact on the localization
and map accuracy. In feature-rich regions, loss of a few images
does not largely affect the overall accuracy. In regions with fewer
features or fast device movement, dropping even a single image
could result in lower accuracy. In the worst case, the device can fail
to localize the incoming image, resulting in tracking loss. This is a
catastrophic event and triggers relocalization, a separate, compu-
tationally more intensive process that puts the mapping on hold
while it attempts to reacquire the device location in the current

map. Since mapping is put on hold, relocalization leads to a further
loss in map building. Such a cascading effect completely derails the
SLAM process on a resource-constrained device. Given these obser-
vations, it is very important for the device to manage its resources
to avoid relocalization at all costs.

Our experiments show that Tracking takes an average of 103ms
on the Jetson and 41ms on the laptop when run at the target frame
rate (Table 1, top). A video stream at 10fps generates an image
every 100ms. However, Tracking run at a very low frame rate (.5
fps) takes an average of 138ms on the Jetson and 69ms on the
laptop (Table 1, bottom). The increased duration results from the
relationship between available resources, map size, and module
execution length. When run with a large amount of resources,
SLAM systems are able to create more KeyFrames and MapPoints,
which increases the map size, which increases the search space for
tasks such as feature matching.
Timely Map Optimization. The Local Mapping module opti-
mizes the map after each KeyFrame created in Tracking, primarily
by culling redundant KeyFrames and MapPoints and modifying
the relative pose of MapPoints to minimize overall error. Ideally,
Local Mapping executes on every Keyframe added to the global
map, making the map as efficient and accurate as possible. If this
module is behind on processing, the Tracking and Loop Closure
modules would interact with an un-optimized map, which has three
ramifications. First, without culling redundant KeyFrames and Map-
Points, all other modules will operate on a larger map, taking longer
to accomplish the same task. Second, without an optimized map,
the accuracy of the map suffers. Third, without the creation of new
MapPoints, Tracking has a higher chance of entering relocalization.

Our experiments show that Local Mapping takes 417ms on aver-
age on the Jetson and 205ms on the laptop when run at the target
frame rate. When run at the low frame rate, Local Mapping takes
1757ms on the Jetson and 566ms on the laptop. This is because a
larger and denser map leads to a larger search space for optimization
tasks, as well as more map data that needs to be optimized.
Timely Loop Detection and Closure. The Loop Closing module
detects and closes loops in the trajectory to correct accumulated
trajectory drift. It is difficult to specify the timeliness requirements
of the Loop Closure module as its effects are indirect. Executing as

HotMobile ’22, March 9–10, 2022, Tempe, AZ, USA Semenova, et al.

Table 2: The tracked images, created KeyFrames, dropped
KeyFrames, and ATE (average trajectory error) for the four
experiments in Table 1. The sequence contains 4539 images.

Experiment
Tracked
Images

Created
KeyFrames

Dropped
KeyFrames ATE

Jetson, 10 fps 4240 532 652 15.71m
Laptop, 10 fps 4529 1400 733 7.41m
Jetson, .5 fps 4532 2933 399 5.38m
Laptop, .5 fps 4532 3731 10 6.56m

soon as a loop is discovered results in a globally optimized, efficient
map that minimizes error. However, execution of this module locks
the map data structure and halts the execution of Tracking and
Local Mapping, which has ramifications for overall performance
as described in those modules. Identifying how long Loop Closing
can be delayed, or identifying an idle time in map access when the
execution of Loop Closing does not affect other modules, could
greatly improve overall SLAM performance.

Loop Closing is significantly more computationally expensive
than the previous two modules: 1306ms on the Jetson and 858ms
on the laptop for the target frame rate. For the low frame rate,
the module took 1757ms on the Jetson and 566ms on the laptop
because a larger and denser map leads to a larger search space for
loop closures and more KeyFrames and MapPoints that need to be
modified if a loop is detected.

5 The Concurrency Challenge
As described earlier, the SLAMmodules are implemented in three

concurrently executing threads and need to frequently access the
shared global map. Shared memory access is managed using locks,
allowing the modules sequential access to the global map. Table 1
shows the effective execution time of each module, including the
time spent waiting on lock acquisitions. However, we found that
blocks due to lock acquisitions accounted for very little of the total
execution time. This is because ORB-SLAM2 was designed to drop
or minimally process data rather than wait on lock acquisitions, in
order to aid each module in meeting its timeliness goals. However,
drops result in missingmap and localization data, which in turnmay
result in additional workload (relocalization), a dramatic reduction
in performance, and even a complete halt in KeyFrame creation.
In our experiments, we observe that more resource-constrained
environments suffer from higher ATE (average trajectory error) and
more relocalizations, which we attribute to an increased amount of
KeyFrame drops due to concurrency (Table 2). In this section, we
will discuss the relationship between decreased performance, data
drops, and resource contention.
Frame Drops. Each module picks up work from its queue when it
is ready to process the next input. The Tracking queue only contains
the latest frame that arrived from the camera. Thus, a frame drop
occurs when multiple frames arrive while Tracking is busy. Our
experiments show that the laptop at 10fps, the Jetson at .5fps, and
the laptop at .5fps track roughly the same amount of images (Table
2). The Jetson at 10fps tracks significantly fewer images because it
experiences an increased amount of relocalizations, during which
no images are tracked at all. However, before any relocalizations,
the Jetson at 10fps and the laptop at 10fps track nearly the same
amount of images: 1054 and 1057, respectively. While Tracking runs

Time (s)

Local Mapping Operation Affecting KeyFrame Creation Rate (KITTI 00, Jetson TX2)

0
2
4
6
8

10

0
2
4
6
8
10

0 100 200 300 400

Time (s)
0 100 200 300 400

Local Mapping Operation Affecting KeyFrame Creation Rate (KITTI 00, Laptop)

0
2
4
6
8

10

0
2
4
6
8
10

Figure 2: Left (blue) axis indicates rate of KeyFrame creation,
while the right (orange) axis indicates rate of Keyframe drop
due to concurrency. A higher blue line and lower orange line
indicates better performance.

C
on

ne
ct

ed
 K

ey
Fr

am
es

(%
 o

f T
ot

al
 K

ey
Fr

am
es

 in
 M

ap
)

KeyFrame Connectivity in Covisibility Graph
for Each New KeyFrame (DronesLab Datasets, Laptop)

KeyFrame ID

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500

Bell Dataset
Jarvis Dataset

C
on

ne
ct

ed
 K

ey
Fr

am
es

(%
 o

f T
ot

al
 K

ey
Fr

am
es

 in
 M

ap
)

KeyFrame ID

0 500 1000 1500 2000 2500 3000 3500

KeyFrame Connectivity in Covisibility Graph
for Each New KeyFrame (KITTI 00, Laptop)

0

20

40

60

80

100
Laptop Run 1
Laptop Run 2

Figure 3: The KeyFrame connectivity in the covisibility
graph for each new KeyFrame, as a percentage of the to-
tal KeyFrames.

at a slower rate on the Jetson than the laptop, both devices can run
the Tracking task faster than the rate of incoming images, so very
few images are dropped. The key takeaway is that, while frame
drops can contribute to lowered mapping and localization results,
they do not contribute to the lower accuracy and more frequent
relocalizations seen in our experiments.
KeyFrame Drops. The Local Mapping module has an unbounded
queue. To avoid processing stale data and falling behind real-time,

AQuantitative Analysis of System Bottlenecks in Visual SLAM HotMobile ’22, March 9–10, 2022, Tempe, AZ, USA

the queue length is mitigated in two ways. First, Local Mapping
will skip additional optimizations (“New MapPoints Creation" and
“Further Optimization" in Figure 1) if there are any items in its queue.
This has ramifications for the accuracy (due to a suboptimal map)
and timeliness (due to a larger map) of localization and mapping
results. Second, because map optimization modifies a large part of
the map, ORB-SLAM2 does not allow Tracking and Local Mapping
to occur at the same time. When a new KeyFrame is created, the
system chooses either to interrupt Local Mapping or to discard the
new KeyFrame and allow Local Mapping to complete. The latter
is a KeyFrame drop, and we identify it as the primary effect of
concurrency on performance in resource-constrained devices.

In the first 100 seconds (before any relocalizations), the Jetson
creates 232 KeyFrames and the laptop creates 372 KeyFrames, de-
spite both devices tracking a similar amount of frames in that time.
The difference in the number of created KeyFrames is because the
Jetson experiences more KeyFrame drops. Figure 2 illustrates the
rate at which Tracking inserts a KeyFrame (left axis, blue) and the
rate at which KeyFrames are dropped due to resource contention
with Local Mapping (right axis, orange), for the entire KITTI 00
sequence for both devices. Areas of the graph where the KeyFrame
creation rate goes to 0 indicate that the device is in relocalization
mode. Taken together, the gap between the two rates indicates the
extent to which resource contention affects KeyFrame creation.
Impact of Loop Closure. Loop Closing also has an unbounded
queue, and the other two modules will check that it is not running
before they attempt to process incoming data. The effect of these
drops are limited because the duration of Loop Closing is very
short (< 5 ms) when a loop is not found and loops are found infre-
quently. However, Loop Closing is a much more computationally
intensive process than the other two and will execute for much
longer. Thus, the amount of drops and skipped optimizations would
be heightened when a loop closure occurs.

5.1 Viability of Fine-Grained Concurrency
With fine-grained concurrency, we can reduce the number of

drops and skipped optimizations by allowing modules to run con-
currently if they do not modify the same subsection of the map. In
this section, we discuss the possibility for fine-grained concurrency
given the current structure of the shared global map.

The global map is concurrently accessed by all three SLAM mod-
ules, with a high frequency of reads and writes and a wide variety
of short to long-range queries. It is comprised of four data struc-
tures: KeyFrames, MapPoints, the spanning tree, and the covisibility
graph (Figure 1). The latter two are generated from KeyFrames and
MapPoints to speed up several computations. The covisibility graph
describes the KeyFrame connections — each KeyFrame is a node
and an edge exists between two KeyFrames if they observe the same
MapPoints. When Tracking inserts a new KeyFrame, the covisibility
graph is updated to include the new KeyFrame and connect it to
the appropriate, older KeyFrames.

Figure 3 show the percentage of all the KeyFrames that an in-
serted KeyFrame is connected to (i.e., the KeyFrame connectivity) for
two DronesLab datasets and the KITTI dataset. As the map grows,
the percentage of KeyFrames the incoming KeyFrame connects to
reduces, which is expected. Figure 4 shows the covisibility graph
for the KITTI dataset. The KeyFrames are denser when the device

Figure 4: The covisibility graph at the end of the dataset, and
a zoomed-in portion of the same graph.

0
1
2
3
4

Time (s)
0 100 200 300 400

Variability in KeyFrame Creation Rate within Jetson
Run 1
Run 2
Run 3
Run 4
Run 5

0
1
2
3
4
5
6

Variability in KeyFrame Creation Rate within Laptop
Run 1 Run 2 Run 3 Run 4 Run 5

Time (s)
0 100 200 300 400

Figure 5: Variability in the KeyFrame creation rate within a
device for the KITTI dataset.
is traveling at a reasonable speed without turns, and connectivity
is sparser when there are turns or faster movement. This opens an
opportunity to increase concurrency through fine-grained locking
or other granular synchronization mechanisms.

6 The Context Challenge
SLAM systems must perform computationally intensive opera-

tions on quickly-arriving input data and achieve acceptable accura-
cies at a target frame rate. Depending on the amount of available
resources (CPU, memory, etc.), some devices will encounter an
inevitable degree of overload when running a SLAM system. For
example, Table 1 (top) shows that the Tracking and Local Mapping
modules are slightly overloaded for the Jetson at 10fps. Addition-
ally, due to the concurrency challenges described earlier, resource-
constrained devices will necessarily need to drop more data com-
pared to resource-rich devices, even if they are not overloaded.

HotMobile ’22, March 9–10, 2022, Tempe, AZ, USA Semenova, et al.

Table 3: Average Trajectory Error for 5 runs of the KITTI
dataset for the Jetson and laptop, both at 10fps.

Jetson 15.71 ± 8.56 m 17.38 ± 8.39 m 18.94 ± 9.22 m
21.45 ± 9.07 m 16.66 ± 8.72 m

Laptop 7.41 ± 3.16 m 6.44 ± 3.53 m 7.54 ± 3.45 m
17.41 ± 7.8 m 7.14 ± 2.88 m

Both circumstances lead to higher variability in performance. Fig-
ure 5 shows the variability in Keyframe creation rate in five runs
on both the Laptop at 10fps and the Jetson at 10fps. While both
platforms exhibit variability, it is more pronounced on the Jetson.
The resultant localization and map accuracies (Table 3) also vary
highly, especially when relocalization is triggered in some runs. For
both devices, the degree of variability makes it difficult to rely on
SLAM systems, since lowering or raising device resources does not
predictably lower or raise performance. Ideally, the system should
gracefully degrade with lowered resources.

Further, our experiments at the very low frame rate suggest that
simply increasing the amount of available resources (either by using
a faster device or lowering the frame rate) might not be the ideal
solution to unpredictable performance and/or overload. For very
low frame rates where the system has an ample amount of time to
perform all computations, ORB-SLAM2 takes longer to run each
module than in cases where the system needs to drop data (Table 1,
bottom). This is because lower resource contention leads to fewer
KeyFrame drops, resulting in a much larger and denser map. A map
with more KeyFrames and MapPoints creates a larger search space
for all tasks, and a denser map with higher KeyFrame connectivity
means that more of the map will need to be optimized and operated
on during each task. The resulting ATEs for the low frame rate
experiments are also not significantly better than the ATE for the
laptop at 10fps, despite such a dramatic frame rate reduction (Table
2). This suggests that the low frame rate experiments are doing an
abundance of tasks that do not significantly increase performance.
If the unimportant tasks could be eliminated, the entire system
could run at a faster frame rate or with worse hardware.

Including context into scheduling decisions addresses both the
problem of reliable graceful degredation and the problem of culling
unnecessary tasks in resource-rich devices. ORB-SLAM2, like most
other SLAM systems, uses the standard OS scheduler to allocate
processing time. However, the importance of each task (and the
percentage of resources it should be allowed to use) changes de-
pending on environmental conditions. Prior literature [2, 10], as
well as our empirical evidence, shows that some KeyFrames are
more important to accuracy and overall execution than others. This
is related to how many features are seen in a given image, how fast
the device is moving in the environment (which in turn affects how
many common features it sees across images), and if the movement
is rotational or translational (rotation results in greater changes
in scene, corresponding to fewer overlapping features across im-
ages). This can be seen in the covisibility graph (Figure 4, bottom)
where there is high variability in the connectivity of the graph. If
we choose to drop a KeyFrame whose connectivity is low, it might
lead to a loss in tracking and trigger relocalization, whereas de-
ciding to drop a Keyframe from a dense region might not affect

the overall function or localization accuracy. The key takeaway
from these observations is that application context is very influential
on the overall function of the system. Further, because timeliness
is incredibly important for the system to achieve its best perfor-
mance, small changes in scheduling have large and long-lasting
effects. Therefore, we cannot treat every concurrent access equally.
Depending on context, we need to variably prioritize KeyFrame
addition, map optimization, or loop closure.

Including knowledge about the external, physical environment
and the generated map into scheduling decisions will have three
effects. First, for all devices, context-aware scheduling will lower the
performance variability and lead to more predictable results. More
predictable results, in turn, will mitigate the effects of overloading
on resource-constrained devices by allowing them to gracefully and
reliably degrade their performance. Lastly, resource-rich devices
will be able to avoid unnecessary tasks that do not affect accuracy
so they can run at a faster frame rate, have less expensive physical
hardware, and/or free up computational time for additional on-
device applications.

7 Future Directions
We have highlighted three systems challenges that affect real-

world deployment of Visual SLAM systems based on an analysis of
the performance of ORB-SLAM2. We believe that these challenges
can be addressed through two design modifications: improving
shared access to the global map and incorporating context-aware
priorities into scheduling tasks.
Improving Shared Access to the Global Map. The joint chal-
lenges of concurrency and timeliness can be improved by pro-
viding better shared access to the global map. There are several
approaches to this problem. The first solution is providing finer
resolution locking on the global map to allow for concurrent access
to non-overlapping regions of the global map. A second approach is
the incorporation of concepts from concurrent data structures [7]
that could provide an alternative to locking as a mechanism for
shared access. A third solution is to create multiple thread-local
versions [6] of the map and incorporate an on-demand mechanism
to synchronize between these versions.
Context-Aware Priorities. A second problem to be solved is the
dynamic changes in priority based on application context. While we
observe this problem in Visual SLAM, we conjecture that it can be
observed more broadly in sensing and control applications where
the sensing affects the overall performance indirectly through inac-
curate plans for control (e.g., autonomous driving, where inaccurate
maps could lead to inefficient or dangerous paths). In all these con-
texts, the priority of processing sensor data (in our case, the Track-
ing module and its creation of KeyFrames) is context-dependent.
Therefore, there needs to be a mechanism for applications to pro-
vide feedback about runtime priority to the scheduling to achieve
efficient execution.
Further SLAM Characterization. Finally, we focused our analy-
sis on ORB-SLAM2 and three sequences across two datasets. Most
modern SLAM systems follow a similar architecture to ORB-SLAM2.
Because of this, we believe our results will likely extend to other
popular SLAM systems. However, future work could expand on
this analysis to include additional SLAM systems and datasets.

AQuantitative Analysis of System Bottlenecks in Visual SLAM HotMobile ’22, March 9–10, 2022, Tempe, AZ, USA

References
[1] Ali J. Ben Ali, Zakieh Sadat Hashemifar, and Karthik Dantu. 2020. Edge-SLAM:

Edge-Assisted Visual Simultaneous Localization and Mapping. In Proceedings of
the 18th International Conference on Mobile Systems, Applications, and Services
(Toronto, Ontario, Canada) (MobiSys ’20). Association for Computing Machinery,
New York, NY, USA, 325–337. https://doi.org/10.1145/3386901.3389033

[2] Alvaro Parra Bustos, Tat-Jun Chin, Anders Eriksson, and Ian Reid. 2019. Visual
SLAM: Why bundle adjust?. In 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2385–2391.

[3] Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José MM Montiel, and
Juan D Tardós. 2021. ORB-SLAM3: An Accurate Open-Source Library for Visual,
Visual–Inertial, and Multimap SLAM. IEEE Transactions on Robotics (2021).

[4] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite. In Conference on Com-
puter Vision and Pattern Recognition (CVPR).

[5] Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Yulin Yang, and Guoquan Huang.
2020. OpenVINS: A Research Platform for Visual-Inertial Estimation. In Proc. of
the IEEE International Conference on Robotics and Automation. Paris, France.

[6] Timothy Merrifield and Jakob Eriksson. 2013. Conversion: Multi-Version Con-
currency Control for Main Memory Segments. In Proceedings of the 8th ACM
European Conference on Computer Systems (Prague, Czech Republic) (EuroSys
’13). Association for Computing Machinery, New York, NY, USA, 127–139.

https://doi.org/10.1145/2465351.2465365
[7] Mark Moir and Nir Shavit. 2018. Concurrent data structures. In Handbook of

Data Structures and Applications. Chapman and Hall/CRC, 741–762.
[8] Raúl Mur-Artal and Juan D. Tardós. 2017. ORB-SLAM2: an Open-Source SLAM

System for Monocular, Stereo and RGB-D Cameras. IEEE Transactions on Robotics
33, 5 (2017), 1255–1262. https://doi.org/10.1109/TRO.2017.2705103

[9] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David
Kim, Andrew J. Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and
Andrew Fitzgibbon. 2011. KinectFusion: Real-time dense surface mapping and
tracking. In 2011 10th IEEE International Symposium on Mixed and Augmented
Reality. 127–136. https://doi.org/10.1109/ISMAR.2011.6092378

[10] Christian Pirchheim, Dieter Schmalstieg, and Gerhard Reitmayr. 2013. Han-
dling pure camera rotation in keyframe-based SLAM. In 2013 IEEE Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR). 229–238. https:
//doi.org/10.1109/ISMAR.2013.6671783

[11] Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Carlone. 2020. Kimera:
an open-source library for real-time metric-semantic localization and mapping.
In 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
1689–1696.

[12] Jingao Xu, Hao Cao, Danyang Li, Kehong Huang, Chen Qian, Longfei Shang-
guan, and Zheng Yang. 2020. Edge Assisted Mobile Semantic Visual SLAM. In
IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. 1828–1837.
https://doi.org/10.1109/INFOCOM41043.2020.9155438

https://doi.org/10.1145/3386901.3389033
https://doi.org/10.1145/2465351.2465365
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1109/ISMAR.2013.6671783
https://doi.org/10.1109/ISMAR.2013.6671783
https://doi.org/10.1109/INFOCOM41043.2020.9155438

	Abstract
	1 Introduction
	1.1 Systems Challenges in SLAM
	1.2 Contributions

	2 Experimental Setup
	3 Visual SLAM Overview
	4 The Timeliness Challenge
	5 The Concurrency Challenge
	5.1 Viability of Fine-Grained Concurrency

	6 The Context Challenge
	7 Future Directions
	References

