
Real-Time Android with RTDroid

Yin Yan, Shaun Cosgrove, Varun Anand, Amit Kulkarni,
Sree Harsha Konduri, Steven Y. Ko, Lukasz Ziarek

Department of Computer Science and Engineering
University at Buffalo, The State University of New York

{yinyan, shaunger, varunana, amitshri, sreehars, stevko, lziarek}@buffalo.edu

ABSTRACT
This paper presents RTDroid, a variant of Android that provides
predictability to Android applications. Although there has been
much interest in adopting Android in real-time contexts, surpris-
ingly little work has been done to examine the suitability of An-
droid for real-time systems. Existing work only provides solutions
to traditional problems, including real-time garbage collection at
the virtual machine layer and kernel-level real-time scheduling and
resource management. While it is critical to address these issues, it
is by no means sufficient. After all, Android is a vast system that is
more than a Java virtual machine and a kernel.

Thus, this paper goes beyond existing work and examines the
internals of Android. We discuss the implications and challenges
of adapting Android constructs and core system services for real-
time and present a solution for each. Our system is unique in that it
redesigns Android’s internal components, replaces Android’s Java
VM (Dalvik) with a real-time VM, and leverages off-the-shelf real-
time OSes. We demonstrate the feasibility and predictability of
our solution by evaluating it on three different platforms—an x86
PC, a LEON3 embedded board, and a Nexus S smartphone. The
evaluation results show that our design can successfully provide
predictability to Android applications, even under heavy load.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems

General Terms
Design, Measurement, Experimentation, Performance

Keywords
Real-time Systems, Mobile Systems, Smartphones, Android

1. INTRODUCTION
There is a growing interest in adopting Android in embedded,

real-time environments. A DARPA project utilizing Android is cur-
rently in development, which creates a plug and play navigation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MobiSys’14, June 16–19, 2014, Bretton Woods, New Hampshire, USA.
Copyright 2014 ACM 978-1-4503-2793-0/14/06 ...$15.00.
http://dx.doi.org/10.1145/2594368.2594381 .

and sensor network that can scale from personal devices up to air-
craft navigators [23, 24]. The UK has recently launched a satellite
equipped with an Android smartphone to explore the possibility of
using a smartphone as a control system [30]. In health care, much
discussion is currently ongoing as to how the medical device indus-
try can adopt Android [1, 4, 6, 7]. In these domains, the benefits
are numerous; developers can leverage Android’s rich set of APIs
to utilize new types of hardware such as sensors and touch screens;
Android’s well-supported, open-source development environment
eases application development; and many applications published in
online application stores give an opportunity to incorporate creative
functionalities with less effort.

However, surprisingly little work has been done in actually adding
real-time capabilities in Android. The current literature only pro-
vides a short overview of potential high-level system models [21]
and extensions to Android’s Java VM (Dalvik) that enable real-
time garbage collection [13, 19]. The fundamental question of how
to add real-time support to Android as a whole system has not been
explored.

This paper presents our first step to answering that question. We
analyze the real-time capabilities of Android and identify limita-
tions. We then propose and implement redesigns of several internal
components of Android to provide real-time support. We recog-
nize, however, that Android is a vast system with many compo-
nents, and that it is difficult to evaluate every aspect of Android.
Thus, our goal for this paper is to identify and redesign core com-
ponents central to Android, in order to support the execution of a
single real-time application. As the rest of the paper shows, this
goal alone has many hard challenges associated and still has broad
applicability in utilizing smartphones in real-time domains such as
control, medical, and military devices. It is also a prerequisite
to supporting multiple real-time applications (i.e., mixed critical-
ity [15, 17]—the ability to execute multiple components with dif-
ferent criticality levels safely).

More concretely, this paper makes the following four contribu-
tions. First, we analyze the real-time capabilities of Android and
present the result. In addition to the kernel and JVM layers, we ex-
amine Android’s application framework, which provides program-
ming constructs and system services to applications. We show that
Android, due to its heavy reliance on unpredictable message pass-
ing mechanisms, does not provide predictable timing guarantees.
We also show that system services (understandably) were not de-
signed to support real-time.

Second, we provide an implementation that addresses the limita-
tions discovered in our analysis. We redesign three of the core com-
ponents in the application framework—a message-passing mecha-
nism (Looper-Handler), the timer service (AlarmManager), and
the sensor architecture (SensorManager)—to provide predictable

Applications

Application Framework

Android Runtime

Linux Kernel

Dalvik Virtual
Machine

Constructs and APIs System Services

Native Libraries

(a) Simplified Android Architecture

Applications

Application Framework

RT Runtime

RTOS Kernel

Fiji Virtual Machine

RT AlarmManager

RT SensorManager

Native Fiji Runtime Interface

Libraries

Bionic lib with
RT extension

RT Handler

RT Looper

(b) RTDroid Architecture

Figure 1: Comparison of Simplified Android and RTDroid Architectures

timing guarantees. We have chosen these components in order to
support a class of applications that perform real-time sensing such
as fall detection (“man down”) applications [18, 29], medical mon-
itors, and control applications.

Third, we report our experience in replacing non-real-time build-
ing blocks (Dalvik and Linux) with real-time building blocks. We
utilize the Fiji real-time VM [27] as our Java runtime and two real-
time OSes (RTLinux [3, 16] and RTEMS [5]) as our kernel op-
tions. These building blocks give us a good starting point with
sound lower-layer real-time guarantees. In replacing these compo-
nents, we have encountered practical challenges in modifying both
the JVM as well as the kernel layers. We discuss these challenges
and our solutions.

Fourth, we demonstrate the real-time capabilities of our redesigns
on three different platforms with varying degrees of guarantees:
(1) hard real-time on a LEON3 embedded board with the RTEMS
RTOS, (2) soft real-time on an x86 PC with RTLinux, and (3) soft
real-time on a Nexus S smartphone with the RTLinux patch ap-
plied on an Android’s version of Linux. In all three platforms,
we show that our redesigns provide predictability to applications
even under heavily-loaded conditions. As part of this effort, we
have implemented, executed, and measured the first real-time An-
droid application: an automatic fall detector deployed on a Nexus
S smartphone and on a LEON3 development board. We show that
even with hundreds of non-real-time “noise” generating threads,
the application shows good timeliness and predictability.

This paper is a continuation of our previous workshop paper [32],
which focused on preliminary redesigns of Looper-Handler and
AlarmManager. In this paper, we explore a more comprehensive
set of challenges including updated versions of Looper-Handler
and AlarmManager, a redesigned real-time SensorManager, and
a fall detector that runs on both a smartphone and a LEON3 embed-
ded board. Our prototype presented in this paper enables the execu-
tion of a single application while providing real-time guarantees. It
serves as a base system on which we will explore multi-application
execution in a mixed criticality environment, which is part of our

future work discussed in Section 9. Additional performance mea-
sures, experiments, raw data, and plotting scripts are publicly avail-
able on our website: http://rtdroid.cse.buffalo.edu.

The rest of the paper is organized as follows. Section 2 provides
an overview of our system, RTDroid. Sections 3, 4, and 5 show the
limitations of three components of Android, presents our redesigns
and provide a Worst-Case Execution Time (WCET) formalization
for each component to algorithmically quantify an upper bound for
each individual component. Section 6 reports our experience in re-
placing non-real-time components with real-time counterparts. Fi-
nally, Section 8 discusses our related work and Section 9 discusses
our future work and conclusions.

2. OVERVIEW
In this section, we first examine the architecture of Android and

discuss the existing work for real-time Android. We then explore
the question of how to add real-time capabilities to Android fo-
cusing on time, memory, and resource predictability. Lastly, we
present an overview of our system, RTDroid.

2.1 Background
Fig. 1a shows a simplified version of the Android architecture.

The purpose of the figure is not to give a detailed view of Android;
instead, we highlight only those components relevant to our discus-
sion in this section.

As Fig. 1a depicts, we can divide Android into roughly three
layers below the application layer: (1) the application framework
layer, (2) the runtime and libraries layer, and (3) the kernel layer.
Android leverages a modified Linux kernel, which does not provide
any real-time features such as priority-based preemption of threads,
priority inversion avoidance protocols, and priority based resource
management. Previous work [13, 19] has also shown that Android’s
runtime and libraries provide no real-time guarantees and Dalvik’s
garbage collector can arbitrarily stall application threads regard-
less of priority, resulting in non-deterministic behavior. Thus, it

is currently well-understood that the bottom layers need real-time
support in order to provide a predictable platform.

However, we show in this paper that even with the proper real-
time features at the kernel and VM layers, Android cannot provide
real-time guarantees. This is due to the fact that the application
framework layer does not provide predictability for its core con-
structs, allowing for arbitrary priority inversion.

Broadly speaking, the application framework layer poses two
problems for real-time applications, one rooted in each of its two
categories shown in Fig. 1a. The first problem lies in the cate-
gory shown on the left, constructs and APIs, which provides pro-
gramming constructs 1 and APIs that application developers can use
such as Looper, Handler, and AsyncTask. This category poses a
problem for real-time applications since the constructs do not pro-
vide any time or memory predictability as well as priority aware-
ness. The main issue is that the latency of message delivery in
these mechanisms is unpredictable; lower priority threads can un-
necessarily prevent higher priority threads from making progress.
In Section 3, we discuss this problem in more detail and present our
solution. Section 7 demonstrates the problem experimentally.

The second problem occurs in the category shown on the right,
system services, which provides essential system services. For ex-
ample, SensorManager mediates access to sensors and AlarmMa-

nager provides system timers. The issue with these system ser-
vices is that the implementation of the services does not consider
real-time guarantees as a requirement. In Sections 4 and 5, we
show how two core system services necessary to run a single sens-
ing application, AlarmManager, and SensorManager, exhibit this
general issue and discuss how we redesign these services for real-
time support.

2.2 Overview of RTDroid
Our system, RTDroid, aims to add real-time support in Android

as a whole system, thereby providing the ability to execute a sin-
gle real-time application that leverages the built-in system services,
such as AlarmManager and SensorManager. This necessitates
that our system is predictable in time and memory usage as well
as resource management. Our current system design targets a uni-
process environment where only a single user-level process (i.e.,
the application process) executes. However, we believe that the de-
sign is extensible to multi-core and mixed-criticality systems. Such
extensions are our future work.

2.2.1 RTDroid Architecture
In order to provide real-time support in all three layers depicted

in Fig. 1a, we advocate a clean-slate redesign of Android in Fig 1b.
Our redesign starts from the ground up, leveraging an established
RTOS (e.g., RT Linux or RTEMS) and an RT JVM (e.g., Fiji VM).
Upon this foundation we build Android compatibility. In other
words, our design provides a faithful illusion to an existing Android
application running on our platform that it is executing on Android.
This entails providing the same set of Android APIs as well as pre-
serving their semantics for both regular Android applications and
real-time applications. For real-time applications, Android com-
patibility means that developers can use standard Android APIs in
addition to a small number of additional APIs our platform pro-
vides to support real-time features. These additional APIs provide
limited Real-Time Specification for Java (RTSJ) [14] support with-
out scoped memory. This goal of providing Android compatibility
makes our architecture unique and different from potential archi-
1By constructs, we mean abstract Java classes provided by the An-
droid application framework. Application developers can extend
these abstract classes to leverage advanced functionalities.

tectures discussed previously in the literature [21], where much of
the focus is on the kernel and the JVM layers.

2.2.2 Benefits of RTDroid
There are three major benefits of our clean-slate design. First,

by using an RTOS and an RT JVM, we can rely on the sound de-
sign decisions already made and implemented to support real-time
capabilities in these systems. Our RTDroid prototype uses Fiji
VM [27], which is designed to support real-time Java programs
from the ground up. Fiji VM already provides real-time func-
tionality through static compiler checks, real-time garbage collec-
tion [28], synchronization, threading, etc. We note, however, that
RTDroid’s design is VM independent.

The second benefit of our architecture is the flexibility of adjust-
ing the runtime model for different use cases. This is because using
an RTOS and an RT JVM provides the freedom to control the run-
time model. For example, we can leverage the RTEMS [5] runtime
model, where one process is compiled together with the kernel for
single application deployment. With this model, an application can
fully utilize all the resources of the underlying hardware.Using this
runtime model is not currently possible with Android, as Android
runs most system services as separate processes. Simply modify-
ing Dalvik or the OS is not enough to augment Android’s runtime
model; the framework layer itself must be changed.

The third benefit of our architecture is the streamlining of real-
time application development. Developers can leverage the rich
APIs and libraries that are already implemented and have support
for various hardware components. Unlike other mobile OSes, An-
droid excels in supporting a wide variety of hardware with different
CPUs, memory capacities, screen sizes, and sensors. Android APIs
make it easier to write a single application that can run on differ-
ent types of hardware. Thus, Android compatibility can reduce the
complexity of real-time application development.

2.2.3 Current Scope of Implementation
Our current RTDroid prototype redesigns three core Android

components, Looper and Handler, AlarmManager and Sensor-

Manager. We have chosen these components due to their extensive
use in existing Android applications as well as in our target applica-
tions. For example, Handler and Looper are essential to Android
applications as they are used implicitly by every application, as we
detail in Section 3. AlarmManager provides a timer service used
by any application that runs periodic tasks; many real-time applica-
tions need to run periodic tasks and rely on such a service to trigger
their tasks. SensorManager provides sensing APIs in Android,
which are necessary for our target real-time sensing applications
such as fall detectors as well as health monitors.

In addition to redesigning the above three components, we have
also ported a subset of other Android programming components
necessary to run an application, such as Service, Context, etc.
These components do not require a redesign and RTDroid is able
to leverage them wholesale. As part of our future work, we plan to
increase our coverage to create a more comprehensive system.

2.2.4 Deployment Profiles
RTDroid supports three different types of deployment profiles

with varying degrees of guarantees provided by the underlying plat-
form and RTOS kernel. Not all of the deployment profiles currently
support hard real-time guarantees due to their use of the RTLinux
kernel and closed source drivers as we explain below.

• Soft Real-time Smartphone: This profile provides the loos-
est guarantees due to its reliance on unverified closed source

drivers and a partially preemptible RTLinux kernel as op-
posed to a fully preemtible RTLinux kernel. 2 As we detail in
Section 6, the Android patch to Linux is incompatible with
the RTLinux patch, which prevents us from putting the kernel
into a fully-preemptible mode. As such, it is only suited for
soft real-time tasks. However, most applications domains,
such as medical device monitoring are soft real-time sys-
tems. In this profile, task deadlines can be missed due to
jitter from the kernel or blocking from the drivers. Neverthe-
less, we demonstrate in Section 7 that we can still provide
tight latency bounds and predictability even on this profile
with RTDroid.
• Soft Real-time Desktop: This profile provides stricter guar-

antees than that of the smartphone as it leverages a fully
preemptible RTLinux kernel. In this profile, we can lever-
age verified-and-certified drivers. However, RTLinux, even
in the fully preemptible kernel is not typically used in hard
real-time systems. Based on current best practices, this de-
ployment should only be used for soft real-time systems. In
this profile, deadlines can be missed due to jitter from the
kernel.
• Hard Real-time Embedded: By moving away from RT-

Linux and using a certified RTOS such as RTEMS as well
as a development board with certified drivers for its hard-
ware sensors, much stricter guarantees can be provided. No
deadlines will be missed due to jitter from the kernel or the
drivers.

3. RT LOOPER AND RT HANDLER
In this section as well as the next two sections, we discuss how

we add real-time support in the application framework layer of An-
droid. As discussed in Section 2, the first issue that the application
framework poses lies in its message-passing constructs. These con-
structs do not provide any predictability or priority-awareness. We
detail this issue in this section and discuss how we address it in
RTDroid.

3.1 Background and Challenges
Android provides a set of constructs that facilitate communica-

tion between different entities, e.g., threads and processes. There
are four such constructs—Handler, Looper, Binder, and Mes-

senger. Since any typical Android application uses these con-
structs, we need to support these constructs properly in a real-time
context.

Among these four constructs, Looper and Handler are the most
critical constructs for our target scenario of running a single real-
time sensing application. This is because Binder and Messen-

ger are inter-process communication constructs, while Looper and
Handler are inter-thread communication constructs. Further, Loo-
per and Handler are used not only explicitly by an application,
but also implicitly by all applications. This is due to the fact that
Android’s application container, ActivityThread, uses Looper

and Handler to control the execution of an application. When an
application needs to make transitions between its execution states
(e.g., start, stop, resume, etc.), ActivityThread uses Looper and
Handler to signal necessary actions.

Fig. 2 shows how Looper and Handler work. Looper is a
per-thread message loop that Android’s application framework im-
plements. Its job is to maintain a message queue and dispatch
each message to the corresponding Handler that can process the

2With a fully preemptible kernel, all parts of the kernel become
preemptible by a high priority thread.

Sender
Thread

handler
instance

Receiver Thread

Looper

Message Queue

Handler
Implementation

dispatchMessage()

sendMessage()

Message 1

Message n

...... handleMessage()

Figure 2: The Use of Looper and Handler

Handler
Object

Thread Thread RT Thread

Msg 1
Msg n

RT Msg1

Looper
Thread

Msg1Msg nRT Msg 1

Message Queue

Figure 3: The thread in which the looper executes processes the
messages sent through this handler object in the order in which
they are received.

message. The developer of the application provides the process-
ing logic for a message by implementing Handler’s handleMes-
sage(). A Handler instance is shared between two threads to
send and receive messages.

The Looper and Handler mechanism raises a question for real-
time applications when there are multiple threads with different pri-
orities sending messages simultaneously. In Android, there are two
ways that Looper and Handler process messages. By default, they
process messages in the order in which they were received. Addi-
tionally, a sending thread can specify a message processing time, in
which case Looper and Handler will process the message at the
specified time. In both cases, however, the processing of a message
is done regardless of the priority of the sending thread or the receiv-
ing thread. Consider if multiple user-defined threads send messages
to another thread. If a real-time (i.e., high-priority) thread sends a
message through a Handler, its message will not be processed un-
til the Looper dispatches every other message prior to its message
in the queue regardless of the sender’s priority as seen in Fig. 3.
The situation is exacerbated by the fact that Android can re-arrange
messages in a message queue if there are messages with specific
processing times. For example, suppose that there are a number
of messages sent by non-real-time (i.e., low-priority) threads in a
queue received before a message sent by a real-time thread. While
processing those messages, any number of low-priority threads can
send messages with specific times. If those times fall within the

Handler
Object

Handler
Object

Thread Thread RT
Thread

Msg 1 Msg n RT Msg1

Looper
Thread

(Non-RT)
Msg 1Msg n

Message Queue Looper
Thread

(RT)
RTMsg 1RTMsg n

RT Message Queue

Figure 4: An Example of Looper and Handler in RTDroid. Each
message has a priority and is stored in a priority queue. Processing
of messages is also done by priority. The example shows one high-
priority thread and multiple non-real-time threads.

processing time window for non-real-time messages, the real-time
message will get delayed further by non-real-time messages.

3.2 Redesign
To mitigate the issues mentioned, we redesign Looper and Han-

dler in two ways. First, we assign a priority to each message sent
by a thread. We currently support two policies for priority assign-
ment. These policies are priority inheritance, where a message
inherits its sender’s priority, and priority inheritance + specified
where a sender can specify the message’s priority in relation to
other messages it sends.

Second, we create multiple priority queues to store incoming
messages according to their priorities. We then associate one Loo-
per and Handler for each queue to process each message accord-
ing to its priority. Fig. 4 shows our new implementation for Looper
and Handler. Since we now process each message according to its
sender’s priority, messages sent by lower priority threads do not
delay the messages sent by higher priority threads. For memory
predictability, queues can be statically configured in size.

3.3 Worst-Case Execution Time
We now formally show how our new design provides predictabil-

ity. The worst-case execution time is the best metric for this pur-
pose as it gives the upper bound on execution time. To understand
the worst-case execution characteristics of the Real-time Looper

and Handler we must reason about how the constructs process a
series of messages and execute each message’s callback function.
We define Tj

i to be the ith message issued by the application from
a thread with priority j. The messages are passed into a real-time
Looper that has the same priority as the messages and then they
are enqueued in a MessageQueue. The time cost for handling the
ith message in priority level j is shown as Sj

i in Equation (1):

Sj
i =

i∑
l=0

(hj
l + deq(T j

l)), (1)

Where hj
l is the cost of time to handle Tj

l and deq(Tj
l) is the cost of

dequeuing from the message queue.
To reason about the worst-case execution time for a message m,

we must first calculate the processing time for all messages that
have priorities greater than or equal to the priority of message m,
shown in Equation (2):

phase0(T
j
i) =

∑
p>j

Sp
last + Sj

i . (2)

Where last is the last message in the message queue with priority p
that is greater than j. Since the system also handles new incoming

messages, which may have a priority greater than or equal 3 to that
of m, we must also define the system in terms of a message arrival
rate R for a given priority p.

We divide the amount of time for the system to handle m into
a number of phases. During phase0, the system handles all of the
messages in the priority queue which are greater than or equal to the
priority of m as shown in Equation 2. While handling the message
in the current phase, new messages arrive at a given rate per priority
level, the system must then handle each of the new messages with
priority greater than or equal to m before handling message m.

In order to quantify the number of messages in each priority
queue, we define a sending rate for each group of clients with prior-
ity p, Rp. When n≥ 1, then worst-case handling time is integrating
all of the handling times for messages that are greater than or equal
to the priority of message m, as shown in Equation (3):

phasen(T
j
i) =

∑
p≥j

phasen−1(T
j
i)∗Rp∑

i=0

(
hp
i + deq(T j

i) + enq(T j
i)
)
.

(3)
Where enq(Tj

i) is the cost of enqueuing in the message queue.
The LHS represents the upper bound of the time cost for mes-

sage handling for phasen, the RHS represents the total time cost
for handling all messages that arrive during phasen−1; The outer
summation is the time to handle each priority level and the inner
summation is the integration of the time to handle all of the same
priority messages that have arrived in the phasen−1. phasen−1(Tj

i)
represents the time spent in previous phase, and when multiplied
by the rate Rp gives the number of messages currently in each pri-
ority based queue. The recursion ends when phasen is smaller than
the time unit of Rp. Thus, the summation of all phases is the ac-
tual worst-case execution time for handling message, m as shown
in Equation (4):

WCET (T j
i) = phase0(T

j
i) + phase1(T

j
i)

+ ...+ phasen−1(T
j
i) + phasen(T

j
i). (4)

Notice, the system is only well defined (i.e. able to process mes-
sages with real-time guarantees) if the worst-case execution time
for each message is less than the deadline for processing that mes-
sage relative to its arrival time and if phasen is less than phasen−1.

4. RT ALARM MANAGER
As mentioned in Section 2, the second issue that Android’s ap-

plication framework layer poses for real-time support is that system
services do not provide real-time guarantees. Since Android medi-
ates all access to its core system functionalities through a set of
system services, it is critical to provide real-time guarantees in the
system services. Just to name a few, these services include Sen-

sorManager that mediates all sensor access and data acquisition;
and AlarmManager that provides a timer service.

The presence of these system services raises two questions. First,
in our target scenario of running a single real-time application,
there is no need to run system services as separate processes; rather
it is more favorable to run the application and the system services
as a single process to improve the overall efficiency of the system.
Then the question is how to redesign the system service architec-
ture in our platform in order to avoid creating separate processes
3Although our Looper and Handler uses a FIFO priority queue,
we are abstracting the complexities of the data-structure algorithm,
such as queuing and dequeuing costs, in the calculation and thus
creating a generalized equation applicable to all our RT redesigns.

AlarmManager

App

Timestamp
Message

Activity
AlarmManager.set()

BroadcastReceiver
onReceive() Message

Figure 5: An Example Flow of AlarmManager. An ap-
plication uses AlarmManager.set() to register an alarm.
When the alarm triggers, the AlarmManager sends a mes-
sage back to the application, and the application’s callback
(BroadcastReceiver.onReceive() in the example) gets exe-
cuted.

while preserving the underlying behavior of Android. Second, as
we show in this section and the next section, the internals of these
system services do not consider real-time support as a design re-
quirement.

To answer these two questions, we redesign two of the system
services—AlarmManager and SensorManager. In this section we
first show how we redesign AlarmManager to provide real-time
guarantees. In the next section, we discuss our SensorManager
redesign.

4.1 Background and Challenges
AlarmManager receives timer registration requests from appli-

cations and sends “timer triggered” messages to these applications
when its timer fires. Since real-time applications frequently rely
on periodic and sporadic tasks, it is important to provide real-time
guarantees in AlarmManager.

Fig. 5 shows how AlarmManager works, including alarm reg-
istration and alarm delivery. An IPC call, with a message 4 and
its execution time, is made to the AlarmManager every time an
application registers an alarm. When the the alarm triggers at the
specified time, the AlarmManager sends a message back to the ap-
plication, and the associated callback is executed. The issue with
AlarmManager is that it provides no guarantee on when or in what
order alarm messages are delivered, hence does not provide any
timing guarantee or priority-awareness.

4.2 Redesign
We redesign both alarm registration and delivery mechanisms to

support predictable alarm delivery. For alarm registration, we use
red-black trees to maintain alarms as shown in Fig. 6. This means
that we can make the registration process predictable based on the
complexity of red-black tree operations, i.e., the longest path of a
tree is no longer than twice the shortest path of the tree. We use one
red-black tree for storing timestamps and pointers to per-timestamp
red-black trees. Per-timestamp trees are leveraged to order alarms
with the same timestamp by their sender’s priority. Thus, our alarm
registration process is essentially one insert operation to the times-
tamp tree and another insert operation to a per-timestamp tree. By
organizing the alarms based on senders’ priorities, we guarantee
that an alarm message for a low priority thread does not delay an
alarm message for a high priority thread. Expired alarms are dis-
carded. Note that this ensures that low priority threads whose alarm

4This message is associated with a callback for the application
which gets executed when the message is delivered.

Alarm MapApp Thread

AlarmManager.set()

Timestamp

Message

Figure 6: The Implementation of Alarm Execution on RTDroid.
The tree colored black at the top maintains timestamps. The trees
colored gray are per-timestamp trees maintaining actual alarm mes-
sages to be delivered.

registration rate exceeds the alarm delivery capacity of the system
cannot prevent a high priority alarm from being triggered.

For alarm delivery, we create an AlarmManager thread and as-
sign the highest priority for timely delivery of alarm messages.
This thread replaces the original multi-process message passing ar-
chitecture of Android. It wakes up whenever an application in-
serts a new alarm into our red-black trees, then it schedules a new
thread at the specified time for the alarm. We associate the ap-
plication’s callback for the alarm message with this new thread.
For precise execution timing of this callback thread, we implement
Asynchronous Event Handlers (AEH) that Real-Time Specification
for Java (RTSJ) [14] specifies the interface for.

We have implemented two versions for AEH. The first is a per-
thread AEH implementation used in our workshop paper [32], which
creates one thread per handler to process a given event type. This
simple mechanism is efficient in handling low numbers of events,
but can create memory and processing pressure due to large num-
ber of handling threads if a large number of events occur within the
same time period. Although most Android applications do not reg-
ister alarms at a frequency that would cause problems, our system
must be resilient to such behavior nonetheless.

The second mechanism leverages a thread pool with a statically
configured number of threads, which reduces the number of threads
that we need to create. Our implementation is based on Kim et al.’s
proposed model [20] and is similar to how the jRate [10] imple-
ments RTSJ’s AEH. The benefit of this implementation is a hard,
statically known limit on the number of threads to handle asyn-
chronous events. There is lower memory usage due to less threads
being created and the output is deterministic with a well-known,
predictable behavior [10].

4.3 Worst-Case Execution Time
The worst-case execution scenario for AlarmManager is similar

to that discussed for the Looper and Handler in Section. 3.3. The
upper bound of delivery and execution of an alarm a consists of 1)
the delivery and execution of all alarms that have been registered
with priority greater or equal to that of a, 2) the delivery and exe-
cution of all newly registered alarms with priority greater or equal
to a based on a per priority rate of alarm delivery and registration.
The equation of WCET for AlarmManager is the same pattern as
shown in Equation (1), (2), (3), (4), but couched in terms of alarm
processing instead of message delivery.

• Tj
i represents the ith alarm registered by application with pri-

ority j.
• Sj

i represents the time cost for handling the ith alarm in pri-
ority level j.

SensorManager

JNI: Native SensorManager

SystemSensor
Manager

SensorManager.cpp

SensorEventQueue

Framework Sensor Libraries

Client Side Server Side

Sensor
Thread

SensorService
(binder proxy)

Binder
Service

BnSensor
Service

SensorDevice

SensorService

SensorEvent
Connection

Sensor
Thread

HAL

Bit
Tube

SensorEventConnection
instance

SensorFusion

Linear
Accelerometer Orientation...

SensorBase

Accelerometer Gyroscope...

Sensors.cpp

Drivers.so

Kernel

Event handler

Event Device

Input Core

input device ...

Figure 7: Android Sensor Architecture

• hj
i is the cost of time to execute the alarm Tj

i .
• last is the last alarm in priority p that is greater than j.
• enq(Tj

i) is the cost of alarm registration.
• deq(Tj

i) is the cost of alarm delivery.

5. RT SENSOR ARCHITECTURE
Another system service we redesign in RTDroid is SensorMa-

nager. Modern mobile devices are equipped with many sensors
such as accelerometers, gyroscopes, etc. Android, mainly through
its SensorManager, provides a set of APIs to acquire sensor data.
This section examines the current sensor architecture of Android
and presents our new design for real-time support.

5.1 Background and Challenges
On Android, sensors are broadly classified into two categories.

The first category is hardware sensors, which are the sensors that
have a corresponding hardware device. For example, accelerometer
and gyroscope belong to this category. The second category is soft-
ware sensors, which are “virtual” sensors that exist purely in soft-
ware. Android fuses different hardware sensor events to provide
software sensor events. For example, Android provides an orienta-
tion sensor in software. On Nexus S, Android 4.2 has 6 hardware
sensors and 7 software sensors.

These sensors are available to applications through SensorMa-

nagerAPIs. An application registers sensor event listeners through
the provided APIs. These listeners provide the application’s call-
backs that the Android framework calls whenever there is any re-
quested sensor event available. When registering a listener, an ap-
plication can also specify its desired delivery rate. The Android
framework uses this as a hint when delivering sensor events.

Internally, there are four layers involved in the overall sensor
architecture—the kernel, HAL, SensorService, and SensorMa-

nager. Fig. 7 shows a simplified architecture.

1. Kernel: The main job of the kernel layer is to pull hard-
ware sensor events and populate the Linux /dev file system
to make the events accessible from the user space. Each sen-

sor hooks to the circuit board through an I2C bus and regis-
ters itself as an input device.

2. HAL: The HAL layer provides sensor hardware abstractions
by defining a common interface for each hardware sensor
type. Hardware vendors provide actual implementations un-
derneath.

3. SensorService: SensorService converts raw sensor data
to more meaningful data using application-friendly data struc-
tures. This involves three steps. First, SensorService polls
the Linux /dev file system to read raw sensor input events.
Second, it composites both hardware and software sensor ev-
ents from the raw sensor input events. For hardware sensors,
it just reformats the data; for software sensors, it combines
different sources to calculate software sensor events via sen-
sor fusion. Finally, it writes each sensor event to the Sen-

sorEventQueue via SensorEventConnection.

4. Framework Layer: SensorManager delivers the sensor ev-
ents by reading the data from SensorEventQueue and in-
voking the registered application listeners to deliver sensor
events.

There are two issues that the current architecture has in providing
predictable sensing. First, there is no priority support in the sensor
event delivery mechanism since all sensor events go through the
same SensorEventQueue. When there are multiple threads with
different priorities, the event delivery of lower-priority threads can
delay the event delivery of higher-priority threads. Second, the pri-
mary event delivery mechanisms poll and buffer at the boundary of
different layers (e.g., between the kernel and SensorService and
between SensorService and SensorManager) by use of mes-
sage passing constructs. Android does not provide any guarantee
on how long it takes to deliver events through these mechanisms.

5.2 Redesign
We redesign the sensor architecture for RTDroid to address the

two issues mentioned above. Our design is inspired by event pro-

RT SensorManager

ProcessingComponent

PollingComponent

DeliveryHandler (Real-time Handler)

RT Looper

RT Handler

RT Looper

RT Handler

RT Looper

RT Handler...

Accelerometer
ProcessingThread

Gyroscope
ProcessingThread

Orientation
ProcessingThread...

PollingThread (Periodic RT Thread)

Fusion

Kernel: Device Event

native interface

Figure 8: RTDroid Sensor Architecture

cessing architectures used for Web servers [26, 31]. We first de-
scribe the architecture and discuss how we address the two prob-
lems with our new architecture.

As shown in Fig. 8, there are multiple threads specialized for
different tasks. At the bottom, there is a polling thread that pe-
riodically reads raw sensor data out of the kernel. This polling
thread communicates with multiple processing threads. We allo-
cate one thread per sensor type as shown in Fig. 8, e.g., one thread
for accelerometer, one thread for gyroscope, and one thread for the
orientation sensor. The main job of these processing threads is to
perform raw sensor data processing for each sensor type. For ex-
ample, a processing thread for a hardware sensor reformats raw
sensor data using an application-friendly format, and a processing
thread for a software sensor performs sensor fusion. Once the raw
sensor data is properly processed, each processing thread notifies
the delivery thread whose job is to create a new thread that exe-
cutes the sensor event listener callback registered by an application
thread. To provide predictable delivery, we use notification, not
polling, for our event delivery except in the boundary between the
kernel and the polling thread. We provide additional predictability
through our priority inheritance mechanism described next.

We address the two issues mentioned earlier by priority inheri-
tance. When an application thread of priority p registers a listener
for a sensor, say, gyroscope, then the processing thread for gyro-
scope inherits the same priority p. If there are multiple application
threads that register for the same gyroscope, then the gyroscope
processing thread inherits the priority of the highest-priority appli-
cation thread. In addition, when the delivery thread creates a new
thread that executes a sensor event listener callback, this new thread
also inherits the original priority p of the application thread. We as-
sign the highest priority available in the system to the polling thread
to ensure precise timing for data pulling.

This combined use of event-based processing threads and pri-
ority inheritance has two implications. First, when an application

thread registers a listener for a sensor, we effectively create a new,
isolated event delivery path from the polling thread to the listener.
Second, this newly created path inherits the priority of the original
application thread. This means that we assign the priority of the
application thread to the whole event delivery path.

5.3 Worst-Case Execution Time
The worst-case execution scenario for SensorManager is slightly

different than what we have discussed in Section. 3.3 and 4.3. The
upper bound for delivery of the sensor event to a sensor listener, l,
consists of three parts: (1) the time cost of the system delivery the
sensor event to all sensor listeners that registered a listener that are
greater or equal to the priority of l, (2) recursively integrate the time
cost for register and deliver of the sensor data for the new higher-
priority listener arriving at a per priority rate, and (3) the time cost
for polling the data from each sensor kernel module. The WCET
equation for SensorManager is in the same fashion as previously
defined in Equation (1), (2), (3), (4), and includes the sensor data
polling cost as shown in in Equation. 5, 6:

phase0(T
j
i) =

∑
p≥j

Pj(sensore) +
∑
p>j

Sp
last + Sj

i (5)

phasen(T
j
i) =

∑
p≥j

phasen−1(T
j
i)∗Rp∑

i=0

(
hp
i + deq(T j

i) + enq(T j
i)
)
.

(6)

• Tj
i represents the ith sensor listener in application with pri-

ority j.
• Sj

i represent the time cost to execute the ith callback of sen-
sor listener in priority level j .
• hj

i is the amount of time to execute the callback of sensor
listener of Tj

i .
• deq(Tj

i) is the cost of listener registration.
• last is the sensor listener in priority p that is greater than j.
• Pj(sensore) is the cost of sensor data polling.

6. REAL-TIME BUILDING BLOCKS
In this section, we report our experience in replacing non-real-

time building blocks (Dalvik and Linux) with off-the-shelf real-
time counterparts (Fiji VM and RTOSes). As mentioned earlier,
we support three deployment profiles, an x86 PC environment, an
embedded environment with a LEON3 development board, and
an ARM-based smartphone environment with a Nexus S smart-
phone. The x86 and the LEON3 environments do not require any
more than replacing the non-real-time kernel with either real-time
Linux kernel (by applying an RT-Preempt patch, i.e., RTLinux) or
the real-time RTEMS kernel. The same strategy, however, does
not work for the smartphone environment because Android has
introduced extensive changes in the kernel that are not compati-
ble with RTLinux patches. Thus, we first briefly describe our x86
and LEON3 environments. We then report our experience with the
smartphone environment in detail.

6.1 x86 PC and LEON3
For the x86 environment, we apply an RTLinux patch (patch-

3.4.45-rt60) to Linux 3.4.45, and use Fiji as the real-time VM. Fiji
already runs on RTLinux, thus it did not require any additional ef-
fort. This configuration represents our soft real-time deployment.
Tighter bounds are provided as RTLinux makes the kernel fully
preemptible. Similarly, we can introspect the drivers on the ma-

chine to guarantee their timeliness or leverage off-the-shelf drivers
that have already been vetted.

To create the LEON3 environment, we use a LEON3 embed-
ded board, GR-XC6S-LX75, manufactured by Gaisler. We then
use RTEMS as the real-time kernel and Fiji as the real-time VM.
RTEMS has native support for LEON3 and Fiji already supports
RTEMS. This configuration represents our hard real-time embed-
ded board deployment, avoiding the issues that plague RTLinux
and closed source drivers. The LEON3 manufacturers provide dri-
vers that have previously been certified for automotive, aerospace,
and civilian aviation.

In order to test the SensorManager on the LEON3 system, we
have designed and implemented an accelerometer daughter board
as well as the associated RTEMS compliant driver.

6.2 Nexus S Smartphone
Unfortunately, the same approach is not adequate for executing

real-time applications on an Android phone. This is mainly due to
the incompatibilities between Android and the real-time building
blocks in the kernel layer as well as in Android’s C library, Bionic.
The following are the main challenges to integration.

6.2.1 Bionic
Android does not utilize glibc as the core C library, instead it

uses its own library called Bionic [12]. Bionic is a significantly
simplified, optimized, light-weight C library specifically design for
resource constrained devices with low frequency CPUs and limited
main memory. Its architectural targets are only ARM and x86.

Bionic becomes a problem when replacing Dalvik with Fiji; this
is because it does not support the real-time extensions for Pthreads
and mutexes, which are required by Fiji (or any other real-time Java
VM). In addition, it is not POSIX-compliant. Thus, we have mod-
ified Bionic to include all necessary POSIX compliant real-time
interfaces. This includes all the real-time extensions for Pthreads
and mutexes.

6.2.2 Incompatible Kernel Patches
Android has introduced a significant amount of changes special-

izing the Linux kernel for Android, e.g., low memory killer, wake-
lock, binder, logger, etc. Due to these changes, automatic patching
of an Android kernel with an RTLinux patch is not possible, requir-
ing a manually applied RTLinux patch.

Even after manual patching, however, we have discovered that
we are still not able to get a fully-preemptible kernel which can
provide tighter latency bounds. The reason is simply that Android’s
changes are not designed with full preemption in mind. We are
currently investigating this issue and it is likely that this is an en-
gineering task. Nevertheless, we are not aware of any report of a
fully-preemptible Android kernel.

6.2.3 Non-Real-Time Kernel Features
During our initial testing and experimentation, we have discov-

ered that there are two kernel features that are not real-time friendly.
They are the out of memory killer (OOM killer) [2] and CPUFreq
governors [11]. The OOM killer is triggered when there is not
enough space for memory allocation. It scans all pages for each
process to verify if the system is truly out of memory. It then se-
lects one process and kills it. We have found out that this causes
other threads and processes to stop for an arbitrary long time, cre-
ating unpredictable spikes in latency. For our target scenario of
running a single real-time application, the OOM killer is not only
unnecessary, but a source of missed real-time task deadlines. Mem-
ory management is provided by Fiji VM’s Schism, which is a real-

time, fragmentation tolerant GC [28]. It is therefore, critical to
disable OOM killer.

CPUFreq governors offer dynamic CPU frequency scaling by
changing the frequency scaling policies. Android uses this to bal-
ance between phone performance and battery usage. The problem
is that when a CPUFreq governor changes the frequency, it affects
the execution time of all running threads, again introducing jitter in
the system. Moreover, frequency scaling is not taken into consider-
ation when scheduling threads. The result is missed task deadlines
and unpredictable spikes in latency. Although not the focus of our
experiments, we note that real-time scheduling that takes voltage
scaling into consideration has been vetted for hardware architec-
tures with specialized mechanisms for predictability [9].

In our experiments, we show the behavior of RTDroid with two
governors—the “ondemand” governor, which dynamically changes
the CPU frequency depending on the current usage, and the “per-
formance” governor, which sets the CPU frequency to the highest
frequency possible. We leave it as our future work to handle dy-
namic frequency scaling. For example, we can apply an existing
method for worse case execution time analysis [22] to validate the
hardware and leverage this timing analysis to modify the kernel and
VM schedulers appropriately.

7. EXPERIMENTAL RESULTS
To measure and validate our prototype of RTDroid, we tested

our implementation on three system level configurations, each of
which represents one of our target deployments discussed in Sec-
tion 2.2.4. The first configuration utilizes an Intel Core 2 Duo 1.86
GHz Processor with 2GB of RAM. For precise timing measure-
ments, we disabled one of the cores prior to running the exper-
iments. The second configuration is a Nexus S phone equipped
with a 1 GHz Cortex-A8 and 512 MB RAM along with 16GB of
internal storage and an accelerometer, gyro, proximity, and com-
pass sensors running Android OS v4.1.2 (Jelly Bean) patched with
RT Linux v.3.0.50. For the third configuration we leveraged a GR-
XC6S-LX75 LEON3 development board running RTEMS version
4.9.6. The board’s Xilinx Spartan 6 Family FPGA was flashed with
a modified LEON3 5 configuration running at 50Mhz. The de-
velopment board has an 8MB flash PROM and 128MB of PC133
SDRAM. We present observed, end-to-end worst-case execution ti-
mes as it is difficult to provide the latency breakdown for the whole
system without specialized timing hardware. We therefore focus
on showing the timeliness of our system on a series of stress tests.
We couple the worst observed latency/processing time for each ex-
periment with the algorithmic characterization of each component,
individually presented in Sections 3.3, 4.3, and 5.3.

We have designed and developed a daughter board with inter-
face circuitry based on an MMA8452Q triple axis accelerometer.
We have developed an RTEMS driver for the accelerometer and
integrated it into our RTEMS build.

Due to space constraints, we only show a subset of our experi-
mental results. All of our results are available through our website:
http://rtdroid.cse.buffalo.edu.

7.1 RT Looper and RT Handler
To measure the effectiveness of our prototype, we have con-

structed an experiment that leveraged RT Looper and RT Han-

dler. Our microbenchmark creates one real-time task with a 100
ms period that sends a high-priority message. To measure the pre-
dictability of the system, we calculate the latency of processing the

5The LEON3 core was reconfigured to allow access to a specific
I2C bus so that the accelerometer could be connected to the board.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

M
ic

ro
se

co
nd

s

Message Sequence Number

(a) RTDroid: 30 low-priority threads

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

M
ic

ro
se

co
nd

s

Message Sequence Number

(b) RTDroid: 300 low-priority threads

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400

M
ic

ro
se

co
nd

s

Message Sequence Number

(c) Android: 30 low-priority threads

Figure 9: The observed raw latency of Looper and Handler on x86. Please note graph (c) has a different Y-axis.

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300 350 400

M
ic

ro
se

co
nd

s

Message Sequence Number

(a) RTDroid: 5 low-priority threads

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300 350 400
M

ic
ro

se
co

nd
s

Message Sequence Number

(b) RTDroid: 30 low-priority threads

 0

 5000

 10000

 15000

 20000

 0 50 100 150 200 250 300 350 400

M
ic

ro
se

co
nd

s

Message Sequence Number

(c) Android: 5 low-priority threads

Figure 10: The observed raw latency of Looper and Handler on LEON3 Please note graph (c) has a different Y-axis.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

M
ic

ro
se

co
nd

s

Message Sequence Number

(a) RTDroid: With Ondemand Governor

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

M
ic

ro
se

co
nd

s

Message Sequence Number

(b) RTDroid: With Performance Governor

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 0 50 100 150 200 250 300 350 400

M
ic

ro
se

co
nd

s
Message Sequence Number

(c) Android: Base System

Figure 11: The observed raw latency of Looper and Handler on Nexus S. Please note graph (c) has a different Y-axis

message, determined by two timestamps. The first timestamp is
taken in the real-time thread prior to sending the message. This
timestamp is the data encoded within the message. The second
timestamp is taken within the RT Handler responsible for pro-
cessing this message after the message has been received and the
appropriate callback invoked. The difference between these two
timestamps is the message’s latency.

In addition, the experiments include a number of low-priority
threads which also leverage RT Looper and RT Handler. These
threads have a period of 10 ms and send 10 messages during each
period. To compare the Looper and Handler designs between
RTDroid and Android, we have ported the relevant portion of An-
droid’s application framework, including Looper and Handler, so
we can compile and run our benchmark application on x86. Thus,
on Android, all threads, regardless of their priorities, use the same
Looper and Handler—this is the default behavior. On RTDroid,
each thread uses a different pair of RT Looper and RT Handler

according to its priority—this is opaque to the application devel-
oper and handled automatically by the system.

To measure the predictability of our constructs under a loaded
system, we increase the number of low-priority threads. We have
executed each experiment for 40 seconds, corresponding to 400 re-
leases of the high-priority message, and have a hard stop at 50 sec-
onds. We measure latency only for the high-priority messages and

scale the number of low-priority threads up to the point where the
total number of messages sent by the low-priority threads exceeds
the ability to process those messages within the 40 second execu-
tion window. On both Intel Core 2 Duo and Nexus S, we have
varied the number of low-priority threads in increments of 10 from
0-300. Considering memory and other limitations of our resource
constrained embedded board, we have run the experiments increas-
ing the low priority threads in increments of 5 from 5-30 when
running on the LEON3 board.

Fig. 9 and Fig. 10 demonstrates the consistent latency of our RT
Looper and RT Handler implementation. On the desktop, we ob-
serve most of the latency for messaging is between 22 µs and 50
µs with any number of threads, and the variance is around 20 µs
from the lowest to the highest latency in any given run. The worst
observed latency variance is 26 µs. This degree of variance on the
system is attributed to context switch costs and scheduling queue
contention. On the LEON3 development board, the result shows a
similar pattern. In contrast, the huge variance of Android on both
platforms clearly indicate its inability to provide real-time guaran-
tees.

Fig. 11 shows the results on Nexus S. We run two series of exper-
iments, one with the ondemand governor and the other one with the
performance governor. It was observed that the latency of the tests
with the ondemand governor decreases with an increasing number

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

M
ic

ro
se

co
nd

Number of Low-Priority Alarms

Delivery Latency
 AEvent Fire Latency

(a) RTDroid: Per Thread AEH

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

M
ic

ro
se

co
nd

Number of Low-Priority Alarms

Delivery Latency
 AEvent Fire Latency

(b) RTDroid: Thread Pool AEH

Figure 12: RTSJ’s AEH implementation - Per Thread vs Thread Pool on x86.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

M
ic

ro
se

co
nd

Number of Low-Priority Alarms

Delivery Latency
 AEvent Fire Latency

(a) RTDroid: Per Thread AEH

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

M
ic

ro
se

co
nd

Number of Low-Priority Alarms

Delivery Latency
 AEvent Fire Latency

(b) RTDroid: Thread Pool AEH

Figure 13: RTSJ’s AEH implementation - Per Thread vs Thread Pool on Nexus S.

of low-priority threads. This is due to the extra load on the system,
which results in the CPU’s frequency being increased by the onde-
mand governor. The tests with the performance governor show a
consistent latency in any given run, since the CPU frequency does
not change. On the other hand, the latency variation from An-
droid is several orders of magnitude greater than that of RTDroid
as shown in Fig. 11a.

7.2 RT AlarmManager
Measuring the performance of the RT AlarmManager was done

with an experiment consisting of scheduling of a single high-priority
alarm at the current system time + 40 ms, while increasing the
number of low-priority alarms scheduled at the exact same time.
We measure two types of latency for the experiment: 1) the en-
tire latency of the alarm delivery (Delivery latency), which is the
difference between the scheduled time and actual execution time
of the high-priority alarm, and 2) the latency of the asynchronous
event fire (AEvent fire latency), which is the difference between the
scheduled time and the actual firing time by the AlarmManager.
The difference between the two types of latency shows how long it
takes for the system to deliver an alarm from the AlarmManager

to the application. We run the experiment on all three platforms.
These results show the timing and latency of the alarm execution
process and indicate that the RT AlarmManager is efficient at pri-
oritizing high-priority alarms and scheduling them at their specified
time.

As mentioned in Section 4, we have implemented two techniques
for alarm management in RT AlarmManager—one with a per-thread
AEH implementation used in our previous workshop paper [32]
and another implemented with a thread pool. We show the predict-
ability of RTDroid with each technique by using threads ranging
from 5-100 and a thread granularity of 10. To induce queueing in
the thread pool implementation, only 3 worker threads are allocated
for the thread pool.

7.2.1 x86 Desktop
Fig. 12 shows the results of the per-thread AEH and the thread

pool AEH experiments running on RTLinux. The latency of the
entire alarm delivery for per-thread AEH on the x86 is bounded
from 220 µs to 331 µs with a 32 µs standard deviation. The Asyn-
chronous event fire latency is consistently around 105 µs. The
thread pool implementation exhibits a slightly slower performance
with the alarm delivery bounded from 255 µs to 355 µs with a 29
µs standard deviation. This small performance drop is expected
and caused by alarm queuing in the thread pool itself.

7.2.2 Nexus S Smartphone
Fig. 13 demonstrates the results with the same experimental sce-

nario on the Nexus S smartphone. It shows the same pattern as the
x86 does, but with a lager value. This is not surprising considering
the hardware difference between X86 and smartphone in terms of
the type and frequency of their CPU and available memory. On av-

 0

 30000

 60000

 90000

 120000

 0 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

M
ic

ro
se

co
nd

s

Event Sequence Timestamp

(a) RTDroid: 1 Comp Thread

 0

 30000

 60000

 90000

 120000

 0 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

M
ic

ro
se

co
nd

s

Event Sequence Timestamp

(b) RTDroid: 100 Comp Threads

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

M
ic

ro
se

co
nd

s

Event Sequence Timestamp

(c) Android: 100 Comp Threads

 0

 30000

 60000

 90000

 120000

 0 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

M
ic

ro
se

co
nd

s

Event Sequence Timestamp

(d) RTDroid: 1 Mem Thread

 0

 30000

 60000

 90000

 120000

 0 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

M
ic

ro
se

co
nd

s

Event Sequence Timestamp

(e) RTDroid: 100 Mem Threads

 0

 30000

 60000

 90000

 120000

 0 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

M
ic

ro
se

co
nd

s

Event Sequence Timestamp

(f) Android: 100 Mem Threads

Figure 14: Memory and Computation stress test for the Fall Detection Application on Nexus S.

erage, the thread pool shows less than 1 ms latency and the worst
observed case is 1.2 ms for both of the the per-thread AEH and
thread pool implementations, with 108 µs and 92 µs deviation.

7.2.3 LEON3 Embedded Board
We have conducted a similar set of experiments on LEON3. Our

results, however, show little difference from our x86 and Nexus S
results. Due to this reason and space considerations, we do not
include the graphs. Overall, for both AEH implementations across
platforms, our experiments show that high-priority threads execute
in a deterministic fashion and with tight bounds. This is irrespective
of the number of low-priority threads that exist in the system.

7.3 Real-Time Fall Detector
To validate the predictability of our sensor architecture in data

delivery, we have created a soft real-time fall detection applica-
tion that leverages our SensorManager outlined in Section 5. We
designed two experiments with two different types of workloads:
(1) a memory intensive load and (2) a computation intensive load.
The memory intensive experiment creates a varying number of non-
real-time priority threads that each allocate a 2.5 MB integer array
storing integer objects. The thread then assigns every other entry in
the array to null. The effect of this operation is to fragment mem-
ory and create memory pressure. The extent of fragmentation is
dependent on the VM and underlying GC. RTGCs can minimize
and in some cases eliminate fragmentation [28]. The computation
intensive experiment creates low-priority, periodic threads with a
period of 20 ms. Each thread executes a tight loop performing a
floating point multiplication for 1,000 iterations.

The fall detection application is registered as a SensorEven-

tListener with SensorManager and executed with the highest
priority in the system. After receiving events from the SensorMa-
nager as outlined in Section 5, the application consumes the Sen-

sorEvent with the value of x, y, and z coordinates and computes
the fall detection algorithm. If a fall is detected the application
notifies a server through a direct socket connection using Wi-Fi.
Since network does not provide any real-time guarantees, we mea-
sure data-passing latency between the time of the sensor raw data
detected in the kernel and the time that the sensor event is delivered
by SensorManager to the fall detection application.

7.3.1 Nexus S Smartphone
Fig. 14 illustrates the observed latency of the sensor event de-

livery for the fall detection application. To stress the predictability
of our SensorManager implementation, we have injected memory
and computationally intensive threads into the application itself that
run alongside of the fall detecting thread. We set these additional
threads to a low priority. The Fig. 14a, Fig. 14b, Fig. 14d, and
Fig. 14e show the latency of sensor event delivery with one low-
priority thread and 100 low priority threads. The upper bound of
these four runs was always around 30 ms, and there is no perceiv-
able difference between executing the application with or without
memory and computationally intensive threads. For comparison we
provide Android performance numbers in Fig. 14c and Fig. 14f to
show the effect of low-priority threads on sensor event delivery in
stock Android.

7.3.2 LEON3
Fig. 15 lists the results of running the system unloaded, with

30 computational threads and with 30 memory intensive threads.
The typical latency is 5.5 ms with a very low standard deviation.
The memory intensive test shows a greater variability in the sensor
event delivery times but they still fall under 6.5 ms and are also
typically 5.5 ms also. RTDroid deployed on this platform creates
a very stable system, especially when compared to the results of

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

M
ic

ro
se

co
nd

s

Event Sequence Timestamp

(a) RTDroid: No Low-Priority Thread

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

M
ic

ro
se

co
nd

s

Event Sequence Timestamp

(b) RTDroid: 30 Comp Threads

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

M
ic

ro
se

co
nd

s

Event Sequence Timestamp

(c) RTDroid: 30 Mem Threads

Figure 15: Memory and Computation stress test for the Fall Detection Application on LEON3.

both Android and RTDroid running on the Nexus S as is shown in
Fig. 14.

8. RELATED WORK
Recent work has performed preliminary studies on the real-time

capabilities of Android. Maia et al. evaluated Android for real-time
and proposed the initial models for a high-level architecture [21].
The study did not explore the Android framework, services, IPC,
nor core library implementations for their suitability in a real-time
context. We believe our work further refines the proposed models.

The overall performance and predictability of DVM in a real-
time setting was first characterized by Oh et al. [25]. Their findings
mirror our general observations on Android. In general, Android
performs well in many operational conditions. However, the core
system does not provide any guarantees, and the worst-case execu-
tion time is parameterized by other applications and components in
the system. Thus, to provide real-time guarantees, we need to alter
the core system constructs, the libraries, and system services built
from them.

Kalkov et al. [19] outline how to extend DVM to support real-
time; they observed that DVM’s garbage collection mechanism sus-
pends all threads until it finishes garbage collection. This design is
obviously problematic for applications that need predictability. The
suggested solution is to introduce new APIs that allow developers
to free objects explicitly. While this design decision does not re-
quire a redesign of the whole Dalvik GC, relying on developers to
achieve predictability adds a layer of complexity. In addition, their
work does not explore how different components within a single
application (or across multiple applications) interact through An-
droid’s core constructs. We have observed, that the structure of
many of Android’s core mechanisms, from which many services
and libraries are constructed, need to be augmented to provide real-
time guarantees. Thus, we believe our implementation is synergis-
tic to such proposals and can be leveraged to provide predictability
when applications leverage services, IPC, or the core Android con-
structs.

9. CONCLUSIONS AND FUTURE WORK
This paper has presented RTDroid, a variation of Android that

aims to provide real-time capabilities to Android as a whole sys-
tem. We have shown that replacing DVM with an RT JVM and
Linux with an RTOS is insufficient to run an Android application
with real-time guarantees. To address this shortcoming, we have re-
designed Android’s core constructs and system services to provide
tight latency bounds to real-time applications. Our experiments
with three platforms—an x86 PC, a LEON3 embedded board, and

a Nexus S smartphone, show that RTDroid has good observed pre-
dictability on several microbenchmarks as well as a real-time ap-
plication across three distinct deployment profiles.

Our future work includes the development of Android specific
real-time APIs and the design of new programming constructs that
naturally support real-time applications on RTDroid. We also plan
to extend the current Android’s application manifest in order to
enable the static definition of real-time features. In parallel, we
are working on supporting multi-application execution using Fiji’s
mixed-criticality support [8, 33] and just-in-time compilation of
real-time applications.

Acknowledgements: We thank our shepherd Feng Qian and the
MobiSys 2014 program committee for their constructive feedback.
We are also grateful to Ethan Blanton, Karthik Dantu, Kyungho
Jeon, Taeyeon Ki, Feng Shen, and Jan Vitek for their insightful
comments. This work is supported in part by a National Science
Foundation Award, CNS-1205656.

References
[1] Android and RTOS together: The dynamic duo for today’s

medical devices.
http://embedded-computing.com/articles/

android-rtos-duo-todays-medical-devices/.

[2] Linux kernel memory management: Out of memory killer.
http://linux-mm.org/OOM_Killer.

[3] Real-Time Linux Wiki.
https://rt.wiki.kernel.org/index.php/Main_Page.

[4] Roving reporter: Medical Device Manufacturers Improve
Their Bedside Manner with Android.
http://goo.gl/d2JF3.

[5] RTEMS. http://www.rtems.org/.

[6] What OS Is Best for a Medical Device?
http://www.summitdata.com/blog/?p=68.

[7] Why Android will be the biggest selling medical devices in
the world by the end of 2012. http://goo.gl/G5UXq.

[8] Ethan Blanton and Lukasz Ziarek. Non-blocking
inter-partition communication with wait-free pair
transactions. In Proceedings of the 11th International
Workshop on Java Technologies for Real-time and Embedded
Systems, JTRES ’13, pages 58–67, New York, NY, USA,
2013. ACM.

[9] Jian-Jia Chen and Chin-Fu Kuo. Energy-efficient scheduling
for real-time systems on dynamic voltage scaling (dvs)
platforms. In Embedded and Real-Time Computing Systems
and Applications, 2007. RTCSA 2007. 13th IEEE
International Conference on, pages 28–38, 2007.

[10] Angelo Corsaro and DouglasC. Schmidt. The design and
performance of the jrate real-time java implementation.
2519:900–921, 2002.

[11] Cpu frequency and voltage scaling code in the linux(tm)
kernel. https://www.kernel.org/doc/
Documentation/cpu-freq/governors.txt.

[12] Android Developers. Bionic c library overview.
http://www.kandroid.org/ndk/docs/system/libc/

OVERVIEW.html.

[13] Thomas Gerlitz, Igor Kalkov, John Schommer, Dominik
Franke, and Stefan Kowalewski. Non-blocking garbage
collection for real-time android. In Proceedings of the 11th
International Workshop on Java Technologies for Real-time
and Embedded Systems, JTRES ’13, 2013.

[14] James Gosling and Greg Bollella. The Real-Time
Specification for Java. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

[15] Dip Goswami, Martin Lukasiewycz, Reinhard Schneider,
and Samarjit Chakraborty. Time-triggered implementations
of mixed-criticality automotive software. In Proceedings of
the Conference on Design, Automation and Test in Europe,
DATE ’12, pages 1227–1232, San Jose, CA, USA, 2012.
EDA Consortium.

[16] D. Hart, J. Stultz, and T. Ts’o. Real-time linux in real time.
IBM Syst. J., 47(2):207–220, April 2008.

[17] Mike G. Hill and Thomas W. Lake. Non-interference
analysis for mixed criticality code in avionics systems. In
Proceedings of the 15th IEEE International Conference on
Automated Software Engineering, ASE ’00, pages 257–,
Washington, DC, USA, 2000. IEEE Computer Society.

[18] iOmniscient. Fall and man down detection.
http://iomniscient.com/index.php?option=com_

content&view=article&id=155&Itemid=53.

[19] Igor Kalkov, Dominik Franke, John F. Schommer, and Stefan
Kowalewski. A real-time extension to the Android platform.
In Proceedings of the 10th International Workshop on Java
Technologies for Real-time and Embedded Systems, JTRES
’12, pages 105–114, New York, NY, USA, 2012. ACM.

[20] MinSeong Kim and Andy Wellings. An efficient and
predictable implementation of asynchronous event handling
in the RTSJ. In Proceedings of the 6th international
workshop on Java technologies for real-time and embedded
systems, JTRES ’08, pages 48–57, New York, NY, USA,
2008. ACM.

[21] Cláudio Maia, Luı́s Nogueira, and Luis Miguel Pinho.
Evaluating Android OS for embedded real-time systems. In
Proceedings of the 6th International Workshop on Operating
Systems Platforms for Embedded Real-Time Applications,
Brussels, Belgium, OSPERT ’10, pages 63–70, 2010.

[22] Sibin Mohan, Frank Mueller, Michael Root, William
Hawkins, Christopher Healy, David Whalley, and Emilio
Vivancos. Parametric timing analysis and its application to
dynamic voltage scaling. ACM Trans. Embed. Comput. Syst.,
10(2):25:1–25:34, January 2011.

[23] Yolanda Murphy. Northrop grumman news release: DARPA
ASPN project article. http://www.irconnect.com/noc/
press/pages/news_releases.html?d=10029353.

[24] Northrop to demo darpa navigation system on android.
http://goo.gl/bgRggD.

[25] Hyeong-Seok Oh, Beom-Jun Kim, Hyung-Kyu Choi, and
Soo-Mook Moon. Evaluation of Android Dalvik virtual
machine. In Proceedings of the 10th International Workshop
on Java Technologies for Real-time and Embedded Systems,
JTRES ’12, pages 115–124, New York, NY, USA, 2012.
ACM.

[26] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash:
An efficient and portable web server. In Proceedings of the
1999 USENIX Annual Technical Conference, USENIX
ATC’99, 1999.

[27] Filip Pizlo, Lukasz Ziarek, Ethan Blanton, Petr Maj, and Jan
Vitek. High-level programming of embedded hard real-time
devices. In Proceedings of the 5th European conference on
Computer systems, EuroSys ’10, pages 69–82, New York,
NY, USA, 2010. ACM.

[28] Filip Pizlo, Lukasz Ziarek, Petr Maj, Antony L. Hosking,
Ethan Blanton, and Jan Vitek. Schism:
fragmentation-tolerant real-time garbage collection. In
Proceedings of the 2010 ACM SIGPLAN conference on
Programming language design and implementation, PLDI
’10, pages 146–159, New York, NY, USA, 2010. ACM.

[29] Military Embedded Systems. Rugged handheld computers
suit up with android on the battlefield.
http://mil-embedded.com/articles/

rugged-suit-with-android-the-battlefield/#.

[30] Strand-1 satellite launches Google Nexus One smartphone
into orbit. http://www.wired.co.uk/news/archive/
2013-02/25/strand-1-phone-satellite.

[31] Matt Welsh, David Culler, and Eric Brewer. Seda: An
architecture for well-conditioned, scalable internet services.
In Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles, SOSP ’01, pages 230–243,
New York, NY, USA, 2001. ACM.

[32] Yin Yan, Sree Harsha Konduri, Amit Kulkarni, Varun Anand,
Steven Y. Ko, and Lukasz Ziarek. Rtdroid: A design for
real-time android. In Proceedings of the 11th International
Workshop on Java Technologies for Real-time and Embedded
Systems, JTRES ’13, 2013.

[33] Lukasz Ziarek. Prp: Priority rollback protocol – a pip
extension for mixed criticality systems: Short paper. In
Proceedings of the 8th International Workshop on Java
Technologies for Real-Time and Embedded Systems, JTRES
’10, pages 82–84, New York, NY, USA, 2010. ACM.

