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ABSTRACT
This paper proposes a new technique that enables open innovation
in mobile platforms. Our technique allows third-party developers to
modify, instrument, or extend platform API calls and deploy their
modifications seamlessly. The uniqueness of our technique is that it
enables modifications completely at the app layer without requiring
any platform-level changes. This allows practical openness—third
parties can easily distribute their modifications for a platform with-
out the need to update the entire platform. To demonstrate the ben-
efits of our technique, we have developed a prototype on Android
called Reptor and used it to instrument real-world apps with novel
functionality. Our evaluation in realistic scenarios shows that Rep-
tor has little overhead in performance and energy, and only modest
overhead in memory usage that ranges from 0.6% to 10% for the
observed worst cases.
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1. INTRODUCTION
Openness drives innovation. There are numerous examples in

computer systems where openness has led to an explosion of new
advances. Perhaps the most recent example is Software-Defined
Networking (SDN) [23], which has unlocked the control interface
of commodity routers and switches. This has enabled third-party
developers to easily write and deploy software controllers for net-
working hardware. Many other examples exist [8, 26, 29, 5, 9],
where openness has enabled realization of novel ideas.

By openness we broadly mean two properties—(1) extensibility,
i.e., the ability for third-party developers to modify, instrument, or
extend an existing platform, and (2) deployability, i.e., the ability
for end users to easily deploy third-party platform modifications.
Previously, extensibility on desktop platforms has been studied ex-
tensively at all layers, i.e., the kernel (e.g., Kprobes [8]), system li-
braries (e.g., Detours [26]), and the application layer (e.g., Aspect-
J [29]). It has also been studied across different subsystems, e.g.,
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Figure 1: App Transformation with API Virtualization

FUSE [5] for filesystems and NetFilter [9] for networking. On the
other hand, deployability for end users has not been studied in de-
tail as it is less of a concern in desktop environments. End users
have low-level access (such as shell or root access) which allows
them to easily download and deploy third-party platform modifica-
tions. For example, FUSE allows an end user to download a new
filesystem such as SSHFS [12] and deploy it easily.

However, this is not the case in modern mobile platforms. De-
ployability is severely restricted, and regular end users cannot eas-
ily use any third-party platform modifications. The default inter-
action available between a regular user and an off-the-shelf mobile
platform is installing and using apps downloaded from online stores
(such as Google Play). Platform modifications typically require a
vendor-controlled update mechanism (such as Google’s Over-The-
Air), low-level system access to overwrite system files, or an ability
to recompile and install a new platform image—none of which is
realistic to expect for a regular user.

Given this constraint, deploying third-party platform modifica-
tions on a mobile platform requires an app-layer approach, where
all platform modifications are contained in an app and those mod-
ifications are embedded in the app statically. This way, we can
achieve both extensibility and deployability—we can use existing
app distribution mechanisms (such as Google Play) to dissemi-
nate third-party platform modifications, without requiring any other
form of access to user devices. This app-layer approach has an ad-
ditional benefit that per-app customizations are possible, i.e., differ-
ent apps can use different platform modifications on a single mobile
device.

This observation brings us to the central idea of this paper—
enabling openness through API virtualization. We introduce a shim
layer between an app and its platform (Figure 1), where we allow
third parties to customize platform API call behavior and add new
functionality. We then statically inject this virtualization layer into
an app for ease of deployment, leveraging bytecode instrumenta-
tion. Example use cases could be automatically augmenting local
storage read/write calls to enable seamless cloud backup [20], im-
proving energy efficiency for always-on sensing [36], or seamless
HTTP-to-HTTPS migration and vendor-specific library switching
as we describe in Section 4.



To concretely demonstrate the benefits of our idea, we have de-
veloped a prototype called Reptor on Android. The primary chal-
lenge we address is correctly enforcing an app to use our API vir-
tualization layer. The exact description of this challenge entails an
involved discussion, which we defer to Sections 2 and 3. Briefly,
the challenge stems from the constraint that all platform modifica-
tions should occur in an app, coupled with the need to comply with
a rich set of features in Android and its default language, Java, such
as sub-typing, polymorphism, and callbacks. To the best of our
knowledge, this challenge of correct enforcement has not been ad-
dressed in the literature. As we detail in Section 2, previous instru-
mentation systems (e.g., SIF [24] and RetroSkeleton [21]) as well
as systems that leverage instrumentation (e.g., AppInsight [33], Va-
narSena [32], and MobileHub [36]) do not provide techniques for
correct enforcement.

We make three contributions. First, we show that an app-layer
approach to platform openness is feasible by designing and imple-
menting a mechanism that enables it on Android (Section 3). Sec-
ond, we show that our approach is useful by implementing three
use cases as well as discussing how our approach could improve
previously-proposed systems (Section 4). Third, we show that our
approach is practical by evaluating our prototype with our own
micro-benchmark apps as well as 1,200 real apps downloaded from
Google Play (Section 5). Our prototype has correctly processed
about 234.8M lines of code to produce the results presented in this
paper, and shows modest overhead—for real apps we see almost
no difference in performance, 0.6% to 10% increase in memory
usage for the observed worst cases, and no statistically significant
overhead in energy usage.

2. API VIRTUALIZATION CHALLENGES
Our goal in enabling API virtualization on Android is to allow

third-party developers to provide alternative platform API imple-
mentations with novel functionality. For example, if a third-party
developer has an implementation for a novel gesture recognition al-
gorithm, we want to be able to provide that as an alternative to the
default gesture recognition provided by Android.

We target Android platform APIs for extensibility because all
functionality of Android is provided by the platform APIs for an
app—they provide traditional OS service APIs (e.g., file system
operations), APIs to access system resources (e.g., sensors), sen-
sor data analytics APIs (e.g., gesture recognition APIs), high-level
app support APIs (e.g., HTTP APIs), and convenient data structure
APIs from standard Java (e.g., hash maps). Conceptually, they are
analogous to the system call interface for a traditional OS. Thus,
allowing alternate implementations for the platform APIs enables
extensibility of the platform.

However, when designing an extensibility mechanism for An-
droid, we need to be conscious about deployability as discussed
in Section 1. Many existing techniques cannot be adopted easily
because they fall short in this regard. Examples include library
overloading using LD PRELOAD, Java class loaders, syscall library
hooks, Java VM hooks, proxies [28], AspectJ [29], etc. These tech-
niques require either low-level access or modifications to the under-
lying platform, resulting in limited deployability for Android.

Thus, we devise an app-layer approach that provides both exten-
sibility and deployability where (1) we statically inject an alterna-
tive third-party API implementation into an app, and (2) we make
sure that the app correctly uses the injected API implementation
instead of the original API implementation from Android. Conse-
quently, there are two challenges we need to address: (1) injecting a
third-party platform API implementation into an existing app, and
(2) correctly enforcing the app to use the injected code. Among

1 public class MyStream extends FileOutputStream {
2 public void write(int b) {
3 // Overriding
4 }
5 }
6 public class Main {
7 public void main(String args[]){
8 MyStream obj1 = new MyStream("/tmp/test");
9 mainWrite(obj1, 10);

10 }
11 public void mainWrite(
12 FileOutputStream obj, int b) {
13 obj.write(b);
14 }
15 }

Figure 2: Sub-Typing Example

these, the first challenge (code injection) is a solved problem and
can be done by Java bytecode rewriting [37, 21, 24].

While code injection can easily be solved, correctly enforcing
the use of injected code is not. To illustrate this challenge, sup-
pose an app calls FileOutputStream.write(), a platform API
method. Also suppose that we want to replace it with a third-party
write() implementation that augments the original write(). For
example, it could perform a local write as well as a remote write
for seamless cloud backup.

At first glance, it may seem that all we need to do is call replace-
ment that consists of two steps—(1) search every occurrence of
obj.write(), where obj is of type FileOutputStream, and (2)
replace it with a call to the third party’s write() implementation.
This, however, can easily result in incorrect behavior as shown in
Figure 2.

In the code, there are two classes, MyStream and Main. My-

Stream extends a platform class FileOutputStream and over-
rides write(). Main initializes a MyStream object (in line 8)
and calls mainWrite() (in line 9). mainWrite(), in turn, calls
write() to perform a file write (in line 13).

Note that mainWrite() (line 11) takes FileOutputStream as
a parameter, and not MyStream. In Main.main(), MyStream is
passed as an argument to mainWrite() (line 9). This is possible
because of sub-typing, i.e., MyStream can be cast to FileOutput-

Stream.
Now suppose that we want to extend the example code to use

a third-party implementation of FileOutputStream.write() by
searching and replacing objects of type FileOutputStream on
which we call the write() method (i.e., using the call replacement
approach as described earlier). In the example code, there is only
one such place, line 13. However, replacing this call is incorrect; at
run time, line 9 passes MyStream to mainWrite(), and replacing
line 13 means replacing MyStream.write(), not FileOutput-
Stream.write(). We note that this is not an isolated problem; in
general, it is not difficult to construct various examples where call
replacement produces incorrect behavior.

Unfortunately, previous systems such as SIF [24] and RetroSkele-
ton [21] only allow call replacement and cannot enforce an app to
use a third-party API implementation correctly. Moreover, many
recent systems, e.g., AppInsight [33], VanarSena [32], and Mobile-
Hub [36], instrument API calls to enable selective logging, fuzzy
testing, and sensor call replacement, respectively. Their instrumen-
tation requires correct replacement of API calls but only uses call
replacement that does not produce correct program behavior.

In Section 7, we further discuss previous techniques and their
limitations. In general, prior work falls into two broad categories,
each with a major limitation—techniques with limited deployabil-



1 public class NewFOS {
2 public void write(int b) {
3 // A reimplementation goes here.
4 }
5 }
6 public class MyStream extends NewFOS {
7 public void write(int b) {
8 // Overriding
9 }

10 }
11 public class Main {
12 public void main(String args[]) {
13 MyStream obj1 = new MyStream("/tmp/test");
14 mainWrite(obj1, 10);
15 }
16 public void mainWrite(NewFOS obj, int b) {
17 obj.write(b);
18 }
19 }

Figure 3: Class Replacement Example

ity (e.g., LD PRELOAD, Java class loaders, Java VM hooks, prox-
ies [28], AspectJ [29], etc.), and techniques that only support call
replacement (e.g., SIF, RetroSkeleton, etc.).

3. API VIRTUALIZATION ON ANDROID
The above discussion reveals that using method calls as the unit

of replacement is fundamentally incorrect, as there are many class-
level features that determine method-level behavior. Consequently,
our approach uses a more natural unit of replacement—classes.
This means that (1) a third party writes a replacement class for
a platform API class that has a new implementation of the platform
class, and (2) our approach replaces all uses of the platform class
in an app with this replacement class. Effectively, our API virtual-
ization layer becomes a set of replacement classes that modify or
reimplement Android platform APIs, and are injected into an app.
Since a class is a natural abstraction for modular implementation,
it is also well-suited as a programming interface for third-party de-
velopers.

Figure 3 extends the previous example and illustrates our use of
a replacement class. In the example, there is a new class NewFOS
that replaces FileOutputStream and reimplements write(). It
is injected into the app’s bytecode (we show the source for illustra-
tive purposes). In the app classes (MyStream and Main), NewFOS
is used instead of the original class, FileOutputStream. This
is shown in line 6 and line 16, which are the only places where
FileOutputStream is used in the original app code. Essentially,
NewFOS replaces all uses of FileOutputStream in the app. This
correctly solves the sub-typing problem described earlier as line 17
uses MyStream, not NewFOS.

Unfortunately, we cannot rely on simple examples such as Fig-
ure 3 to determine whether or not class replacement is the right
approach. We must examine all possible uses of a platform class in
app code, and make sure that we can correctly replace a platform
class with a replacement class provided by a third party. Thus,
we start our solution discussion by presenting our classification of
platform class uses. We then discuss how we handle the different
uses.

3.1 Platform Class Uses on Android
In order to determine all possible uses of a platform class in

app code on Android, we have examined every feature described
in the Android API documentation [15] as well as the Java spec-
ification [7]. We have then classified the uses of platform classes

into the categories shown in Table 1. For simplicity of presenta-
tion, we use the term class to refer to all class-level constructs, i.e.,
interfaces, abstract classes, and enums, unless otherwise specified.

Our categorization achieves two purposes. First, it concisely
summarizes the vast list of platform class uses. Since Java and
Android have many features that enable a wide range of platform
class uses, it is infeasible for us to discuss every single use in the
space given for this paper. Our categorization allows us to capture
sufficient details without going into each and every use. Second,
our categorization shows our findings that (1) there are a few major
challenges we need to address for class replacement, (2) each cate-
gory represents one such major challenge, and (3) these challenges
are inter-related, and it is best to avoid solving them individually
in isolation. Initially, we came up with point solutions for different
categories but had much difficulty integrating them together since
our individual solutions ended up being logically incompatible. Af-
ter some iterations, we have realized that addressing the categories
progressively in the order we present in Table 1 allows us to arrive
at a coherent design in the end. The rest of this section discusses
this progression.

There are many engineering challenges that we address in the
implementation of our design. However, since these only require
mechanical solutions, we refrain from discussing those in detail
and only briefly mention them when needed. To prove that we have
indeed addressed other engineering challenges not discussed in this
paper, we take a pragmatic approach where we use 1,200 real apps
downloaded from Google Play as test cases. In Sections 4 and 5,
we show that these apps work correctly after our transformation,
and the total lines of code we have processed is more than 234.8M.
In Section 6, we further discuss the experiences and implications
of our evaluation strategy with real apps.

3.2 Handling Basic Uses of Platform Classes
We first discuss the most basic uses of platform classes, i.e.,

(both local and class) variables, parameters, and return types. To-
gether, they pose a challenge for class replacement due to a depen-
dency problem they raise. To illustrate this, consider one method
in a platform class, AtomicFile:

void finishWrite(FileOutputStream str)

As shown, FileOutputStream is used as a parameter in finish-

Write(). Using this, the following code shows variable and pa-
rameter uses of FileOutputStream:

FileOutputStream fos = new FileOutputStream(...);

AtomicFile af = new AtomicFile(...);

af.finishWrite(fos);

Now suppose that we are replacing FileOutputStream with
NewFOS as done before in Figure 3. The code becomes:

NewFOS fos = new NewFOS(...);

AtomicFile af = new AtomicFile(...);

af.finishWrite(fos); // does not work

However, this code does not work; finishWrite() expects File-
OutputStream, not NewFOS. To make this work, the first thing
one could try might be modifying finishWrite() to use New-

FOS. However, we cannot do this—AtomicFile is a platform class
provided by one of the Android system libraries, which we cannot
modify.

Although the above code only shows variable and parameter uses
of a platform class, the same problem occurs with return types as
well. The broader challenge is that replacing a platform class has a
dependency problem, since a platform class we want to replace can



Category Description Discussion
Basic Uses of platform classes in variables, parameters, and return types Section 3.2

Class hierarchy Uses of platform classes in inheritance, super calls, and type-casting Section 3.3
Callback Uses of platform classes in Android lifecycle callbacks, and event (UI, sensor, etc.) callbacks Section 3.4

Interface return Uses of platform interfaces returned by platform calls Section 3.5
Runtime Dynamic uses of platform classes, i.e., reflection, synchronized, reference access, and instanceof Section 3.6

Exception Uses of platform exception classes Section 3.6
JNI Uses of JNI Section 3.6

Table 1: Platform Class Use Categories

1 public class DummyAtomicFile {
2 AtomicFile realObj;
3 // Constructor
4 public DummyAtomicFile() {
5 realObj = new AtomicFile();
6 }
7 // Wraps the original method
8 public void finishWrite(NewFOS str) {
9 Object realStr = str.getRealObj();

10 return realObj.finishWrite(realStr);
11 }
12 // Returns the instance of the original type
13 public Object getRealObj() {
14 return realObj;
15 }
16 }

Figure 4: Dummy Class Example

be used as a parameter or return type in other platform classes that
we cannot modify.

Solution—Dummy Classes: We solve the above problem by
creating an additional set of replacement classes called dummy cl-
asses. Using them, we replace the target platform class we want
to replace as well as other platform classes that use the target plat-
form class as parameters and/or return types. This is inevitable as
we cannot modify other platform classes.

Essentially, a dummy class is a simple wrapper around a platform
class and uses replacement classes as parameters and return types.
Figure 4 shows an example dummy class that replaces Atomic-

File. As shown in line 8, finishWrite() is a simple wrapper
over the original, but uses NewFOS instead of FileOutputStream.
All other methods also simply wrap the original methods. For this
wrapping to work, it holds a reference to an instance of the original
class (line 2).

The following code snippet shows how the dependency problem
illustrated above is solved with dummy classes:

NewFOS fos = new NewFOS(...);

DummyAtomicFile af = new DummyAtomicFile(...);

af.finishWrite(fos);

It works correctly as expected.
A dummy class (such as DummyAtomicFile) and an actual re-

placement class (such as NewFOS) share the same code structure in
our design. They all wrap original methods and hold a reference to
an instance of the original type. The only difference is that an ac-
tual replacement class contains third-party’s reimplementation for
some or all of the methods; if a third party does not reimplement a
method, it simply calls its corresponding original method.

Now, it is not difficult to see that there is a rippling effect—
replacing AtomicFile with DummyAtomicFile affects other plat-
form classes that use AtomicFile as parameters or return types,
just as NewFOS affects AtomicFile. That is, if we use a dummy

class as described above, it leads us to create even more dummy
classes.

Our initial idea was to track this rippling effect and determine
the exact set of platform classes that need dummy classes, in a
hope that we would minimize the number of new classes we cre-
ate. However, we observed that most real apps require us to create
dummy classes for almost the entire set of platform classes. Thus,
we have decided to just create a dummy class for each and every
platform class. Effectively, this means that our API virtualization
layer is a layer that consists of dummy and actual replacement cla-
sses.

This approach may seem to incur potentially large overhead.
However, compilers are very good at eliminating dead code as well
as inlining small methods—our implementation in fact performs
basic dead code elimination. Further, using dummy classes paves
the way for the rest of the refinements, i.e., if we use dummy cl-
asses, most of the other refinements logically follow. The runtime
overhead of these dummy classes is modest in terms of latency,
energy, and memory, which we show in Section 5. Nevertheless,
there is an inevitable static cost of code size increase, which we
also show in Section 5.

For the simplicity of presentation, we will simply use “a replace-
ment class” to refer to either a dummy or an actual replacement
class in the rest of the paper.

3.3 Handling Class Hierarchy Uses
Our second category is platform class uses related to Java’s class

hierarchy. This comes second in our category list for a reason, since
addressing the previous category gives us a natural starting point of
addressing this category.

In Java, every class is part of one large class hierarchy, where
java.lang.Object is the root. This enables many convenient
features of object-oriention: (1) inheritance—a class inherits all its
parent class’s methods and fields without defining or implement-
ing them, (2) super calls—even if a class overrides a parent class’s
method, it can still call the parent class’s implementation of the me-
thod by calling it with the keyword super, and (3) type casting—a
class can be cast to any of the classes up in the hierarchy and vice
versa. A platform class can be used in all these cases.

Ideally, a replacement class for a platform class should be a com-
plete replacement in the class hierarchy as well, seamlessly en-
abling all features of the hierarchy such as inheritance, super calls,
and type casting. Otherwise, we need to devise ad-hoc solutions for
point cases, which is not a principled way of solving the problem
at hand.

Unfortunately simply replacing a platform class does not achieve
complete replacement in the class hierarchy. To illustrate this, sup-
pose we have a replacement class NewStream that has a reimple-
mentation of OutputStream, a platform class. Figure 5 shows the
original class hierarchy on the left. Now, consider the following
code snippet:
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MyStream ms = new MyStream();

FileOutputStream fos = (FileOutputStream) ms;

OutputStream os = (OutputStream) fos;

Simply replacing OutputStream with NewStream would produce:

MyStream ms = new MyStream();

FileOutputStream fos = (FileOutputStream) ms;

NewStream os = (NewStream) fos; // does not work

However, the type casting done in the last line does not work; unlike
OutputStream, NewStream is not a parent class of FileOutput-
Stream.

To make this code work, it may seem that we only need to make
FileOutputStream a subclass of NewStream. However, we can-
not do this since FileOutputStream is once again a platform cl-
ass, which we cannot modify. Figure 5 gives a different view on
this using two class hierarchies—the original class hierarchy on the
left and the new hierarchy in question on the right. As shown by
the dotted arrow, in order to make NewStream a drop-in replace-
ment for OutputStream in the class hierarchy, we need to make
FileOutputStream a subclass of NewStream instead of Output-
Stream, which we cannot.

Solution—Class Hierarchy Mirroring: To address the above
problem, we use class hierarchy mirroring that exactly replicates
the original platform-side class hierarchy in the app side. This is
possible since we create replacement classes for all platform cla-
sses anyway, and we can mirror the entire platform class hierarchy
by connecting the replacement classes the same way. Figure 6 il-
lustrates this.

With this class hierarchy mirroring, we can correctly address
the problem described above; in addition to NewStream replac-
ing OutputStream, we have DummyFileOutputStream replacing
FileOutputStream. These replacement classes mirror the origi-

1 // This is the original.
2 public class MyActivity extends Activity {
3 protected void onCreate(Bundle savedState) {
4 super.onCreate(savedState);
5 }
6 }
7 // After using replacement classes
8 public class MyActivity extends ActivityRep {
9 protected void onCreate(DummyBundle savedState) {

10 super.onCreate(savedState);
11 }
12 }

Figure 7: Callback Method Example

nal hierarchy in the app side, and correctly make the code work as
follows:

MyStream ms = new MyStream();

DummyFileOutputStream fos =

(DummyFileOutputStream) ms;

NewStream os = (NewStream) fos;

3.4 Handling Callback Uses
Our third category is callbacks, one of the prominent ways of

using platform classes on Android. Callbacks require app develop-
ers to create subclasses of callback-defining platform classes, and
implement them. They are critical in Android apps since they are
used in essential functions such as handling app lifecycle and UI
events.

We present this category after discussing the previous two cate-
gories for a reason—we cannot consider callback uses of platform
classes in isolation since they are tied together with basic and class
hierarchy uses. Figure 7 illustrates this with two versions of code.
The top one shows original app code, which is in fact a much-used
code structure in Android; MyActivity (an app class) extends Ac-
tivity (a platform class), and implements onCreate() (a call-
back), which expects Bundle (a platform class) as a parameter.
This means that basic, class hierarchy, and callback uses of plat-
form classes are all occurring together. This also demonstrates that
we cannot consider individual categories separately.

Now, the bottom code is a version that uses our design described
so far. It assumes that ActivityRep is a replacement class pro-
vided by a third party, and replaces Activity with ActivityRep

and Bundle with DummyBundle.
However, this causes two problems for callbacks. First, we now

break the relationship between MyActivity and Activity; MyAc-
tivity is now a subclass of ActivityRep instead of Activity.
This is a problem as it violates the callback semantics of Android—
MyActivity must be a subclass of Activity, either directly or
indirectly. This is the only way for Android to correctly recognize
it as a class that implements callbacks defined in Activity.

The second problem is that onCreate() now has a different me-
thod signature from the original one, since it accepts DummyBundle
instead of Bundle. This is another violation of the callback seman-
tics; Android passes a Bundle object, not a DummyBundle object
when it calls onCreate().

Solution—Compiler-Driven Selective Code Rewriting: To pre-
serve Android’s callback semantics, we need to retain the relation-
ship between a callback-defining platform class and any app class
that implements it. But as illustrated above, this conflicts with our
current design.

To resolve this conflict, we devise a strategy where we retain
all callback relationships, while still incorporating the uses of re-
placement classes. Figure 8 demonstrates how we retain callback



1 // After handling callbacks
2 public class MyActivity extends SuperRep {
3 protected void onCreate(Bundle savedState) {
4 DummyBundle dBd = new DummyBundle(savedState):
5 this.onCreateWrapped(dBd);
6 }
7 protected void onCreateWrapped(DummyBundle dBd) {
8 super.onCreate(dBd);
9 }

10 }

Figure 8: Wrapped Callback Example

java.lang.Object

Activity

MyActivity

Platform

App

java.lang.Object

Activity

SuperRep

App

DummyObject

Platform

ActivityRep

MyActivity

Figure 9: New Class Hierarchy for Callbacks

relationships by extending the previous example in Figure 7. Line
3 shows that MyActivity still implements onCreate() defined in
Activity, without modifying the signature. In addition, we make
MyActivity an indirect subclass of Activity as shown in line
2 (MyActivity extends SuperRep, which extends Activity; we
discuss SuperRep later). In other words, it functions as a proper
callback-implementing class.

We then use three techniques that selectively rewrite app code
to incorporate the uses of replacement classes. The first technique
incorporates the basic uses of platform classes, i.e., variable, pa-
rameter, and return type uses. The second technique incorporates
two of the class hierarchy uses, inheritance and super call uses.
The third technique incorporates the last of the class hierarchy uses,
type casting uses. In implementing these techniques, we leverage
a compiler (Soot [37]) to identify places where rewriting needs to
occur. This is not difficult as it only needs to detect callback class
uses in app code.

Our first technique is callback wrapping, as demonstrated in lines
4-5 and lines 7-9 in Figure 8. onCreate() calls a new method on-

CreateWrapped(), which wraps the original onCreate() code
with replacement classes. This callback wrapping allows us to keep
original callback signatures so that Android can correctly invoke
callbacks, while using replacement classes in actual callback han-
dling code.

Our second technique is to introduce a new type of replacement
class called super replacement class. We show an example (Su-
perRep) in Figure 9. We insert this super replacement class be-
tween MyActivity and Activity to correctly handle two of the
three features of the Java class hierarchy—super calls and inher-
itance. Since SuperRep is now a parent class of MyActivity, it
intercepts all invocations of super calls and inherited method calls.
This means that we can put third-party code that replaces Activi-
ty inside of SuperRep, so that all inherited calls and super calls
in MyActivity use the third-party code correctly.

However, there are two subtleties involved further. First, there
are now two replacement classes for a single third-party reimple-

mentation for a platform class, e.g., SuperRep and ActivityRep

for Activity. In order for both replacement classes to use the
same third-party code, we ask developers to write static methods,
as described in Section 3.7. Both replacement classes call these
static methods to use the same code. We note that a super replace-
ment class exists only for a callback-defining platform class, and as
part of the class hierarchy.

Another subtle issue is that we cannot override final methods
in a super replacement class to replace them. For example, in Su-

perRep we cannot override final methods defined in Activity,
which prevents us from replacing them. In order to overcome this
issue, we add a common suffix to all final methods when we put
them in a super replacement class. We then rewrite all call sites that
make inherited or super calls to final methods.

Our final technique for incorporating replacement classes is ex-
plicit casting between an app class and a platform class. This en-
ables the remaining feature of the Java class hierarchy (type cast-
ing) with callbacks. To illustrate this strategy, consider once again
the class hierarchy example in Figure 9. If an app originally casted
MyActivity to Activity in its code, our design described so
far would try casting MyActivity to ActivityRep since we re-
place Activity with ActivityRep. However, this casting does
not work since there is no subclass relationship between the two
classes.

Thus, we explicitly create an instance of the corresponding re-
placement class and rewrite the casting statement as follows (we
assume myAtv is of type MyActivity):

// Original

Activity atv = (Activity) myAtv;

// After API virtualization

ActivityRep atv = new ActivityRep(myAtv);

Conversely, when it gets cast back to the original type, we use the
getRealObj() method in the replacement class to get the original
object as follows:

// Original

MyActivity myAtv = (MyActivity) atv;

// After API virtualization

MyActivity myAtv = (MyActivity) atv.getRealObj();

Technically, explicit casting could be used in general cases, i.e.,
we could use explicit casting instead of mirroring the platform-side
class hierarchy. However, this incurs unnecessary overhead of cre-
ating a new replacement class instance whenever there is casting.
Thus, we still mirror the class hierarchy and only use explicit cast-
ing in a limited fashion.

3.5 Handling Interface Return Type Uses
Our fourth category is related to interfaces, another feature of

Java used for polymorphism that only contain class and method
definitions. An interface must be implemented by a concrete class,
and one cannot instantiate an interface. This poses a challenge for
class replacement, since the return type of a method in a platform
class can be an interface.

For example, a platform class Context has getSharedPrefe-
rences() that returns a platform interface SharedPreferences.
SharedPreferences is a popular data storage option provided by
Android. If we create a replacement class for Context, it will be:

public class DummyContext {

DummySharedPreferences getSharedPreferences(...){



SharedPreferences sp =

realObj.getSharedPreferences(...);

return new DummySharedPreferences(sp);

}

}

However, this code does not work as is; SharedPreferences is
an interface and we need to make its corresponding DummySha-

redPreferences also an interface to mirror the class hierarchy.
This means that we cannot instantiate DummySharedPreferences
as it is done above.

Solution—Using Concrete Dummy Classes: In order to solve
the problem, whenever we mirror an interface with a replacement
interface, we also create a concrete class that implements it. For
example, for DummySharedPreferences, we create Concrete-

DummySharedPreferences class that implements it. The only
case where a concrete class is used is when a platform method re-
turns an interface. For example, the replacement class for Context
becomes:

public class DummyContext {

DummySharedPreferences getSharedPreferences(...){

SharedPreferences sp =

realObj.getSharedPreferences(...);

return new ConcreteDummySharedPreferences(sp);

}

}

This way, we can correctly use a replacement class even when a
platform class method returns an interface. We note that abstract
platform classes have a similar problem, but the solution is much
simpler—for each replacement class of an abstract platform cl-
ass, we simply make it a concrete class so we can instantiate it.

3.6 Runtime, Exception, and JNI Uses
The remaining categories we handle are runtime, exception, and

JNI uses of platform classes. Among these, the runtime use cate-
gory includes reflection, synchronized, reference access, and in-
stanceof. For reflection, we leverage the fact that a reflection call
uses a plain string to identify which class to reflect on. We add extra
code that, at run time replaces a class string with the string for the
corresponding replacement class. The following (simplified) code
demonstrates this:

// Original (a call to java.lang.System.exit())

String str0 = "java.";

String str1 = "lang.System";

Class c = Class.forName(str0+str1);

Object t = c.newInstance();

Method m = c.getDeclaredMethod("exit", ...);

Object o = m.invoke(t, ...);

// After API virtualization

// Assume that str0 and str1 are replaced already

DummyClass c = DummyClass.forName(str0+str1);

DummyObject t = c.newInstance();

DummyMethod m = c.getDeclaredMethod("exit", ...);

DummyObject o = m.invoke(t, ...);

In our DummyClass.forName(), we implement logic that replaces
a passed-down string (e.g., str0+str1) with its replacement class
string. Since there are only a few prefixes for platform API cla-
sses (e.g., android., java., etc.), we can easily identify at run
time if a string is for a platform class. In our implementation, all
replacement classes use the same prefix (reptor.), and we sim-
ply prepend our prefix. We emphasize that this is different from

statically replacing a string with another string. There are many
ways to compose a string dynamically (e.g., as shown in the exam-
ple above), and it is generally difficult to infer a string statically.
We are able to handle reflection gracefully, since we replace and
instrument reflection classes.

For all other runtime uses, i.e., synchronized, reference access
(e.g., using == or ! = to compare object references), and in-

stanceof, we call getRealObj() to use the actual instance and
the original type. This way, we preserve the semantics of app code.

We also wrap all exceptions, but use original exceptions when-
ever necessary to preserve Java exception semantics. This means
that when app code has a try-catch block, we do not change the
catch statement, but add extra code to wrap the caught exception
before it is used in the rest of the code. On the other hand, when
app code throws an exception, we use getRealObj() to throw the
actual exception. The following code demonstrates this:

// Original

try {

...

} catch (IOException e) {

e.printStackTrace();

throw e;

}

// After API virtualization

try {

...

} catch (IOException e) {

DummyIOException de = new DummyIOException(e);

de.printStackTrace();

throw de.getRealObj();

}

For JNI calls, we still wrap them from the Java side but do not
touch native code. We do this since Android is primarily a Java
platform, and our focus is virtualizing the Java APIs of Android.
Other techniques exist that give the ability to intercept native API
calls [38, 17, 39], and we could potentially leverage those as well.

3.7 Implementation
Our prototype called Reptor implements our design. It uses

Soot [37] for injecting replacement classes and rewriting bytecode.
There are two noteworthy features of our prototype. First, it asks
a third-party developer to provide a reimplementation for an API
method as a static method, for which we provide a template. For
example, a third-party developer replaces Activity.onCreate()
by filling the following template:

public class ActivityTemplate {

static void onCreate(Activity is, DummyBundle b){

// Third-party code

}

}

This static method is called within both a regular replacement class
and a super replacement class as discussed in Section 3.4. The first
parameter is always a reference to a real object of the original type
(e.g., Activity), so that a third-party developer can call the orig-
inal method if necessary. The rest of the parameters use replace-
ment classes, and third-party developers can use both replacement
and original types in their code as they see fit. One limitation is
that since we inject a third-party reimplementation into an app, it
cannot perform any privileged operation; however, this is inevitable
for an app-only approach.



The second noteworthy feature of our prototype is that it some-
times generates multiple DEX files. DEX is a bytecode format that
Android uses, and has a limitation—it only allows 64K methods to
be included in a single DEX file. Since we create replacement cla-
sses, sometimes we go over this limit. If that happens, we generate
multiple DEX files [3].

4. USE CASES
We demonstrate the extensibility Reptor affords by implement-

ing three use cases, and discussing how we can improve the correct-
ness of previous systems. We acknowledge that these use cases can
be developed independently; thus, our primary purpose of the use
cases is showcasing that Reptor is a general tool that makes it easy,
correct, and complete for a third party to add new platform-level
functionality.

4.1 Vendor-Tied Library Switching
There is a growing concern that Google has started to offer criti-

cal functionality not as part of stock Android but as part of a propri-
etary, closed-source library called “Google Play Services,” in order
to maintain their competitive edge [16]. It provides important fea-
tures such as location services (maps), search, in-app purchasing,
etc. Although it is installed as a separate system app, it works much
like built-in platform APIs—a large number of popular Android
apps do not work if Google Play Services is not installed. Even
worse, it does not work on non-Google-approved devices such as
Amazon Fire. If an app is developed with it, the app does not run
on Amazon devices. To alleviate this, a few vendors such as To
alleviate this, a few vendors such as Amazon and Samsung offer
compatible, alternate libraries. However, a developer now has the
burden of implementing the use of multiple libraries.

Given this status quo, our first use case is to automatically trans-
form an app developed with Google’s library to use Amazon’s li-
brary. It even allows a user with an Amazon device, without any
help from original developers, to download an app that uses Google’s
library, transform it to make the app use Amazon’s library instead,
and run it on the user’s Amazon device. To demonstrate this, we
have implemented a mechanism that replaces Google Maps APIs
with Amazon Maps APIs. Although Amazon Maps APIs provide
matching classes for Google Maps classes, switching from Google’s
to Amazon’s is not a simple matter of replacing Google API calls
with Amazon API calls; in order to use Google Maps, an app must
not only make API calls, but also provide callbacks to receive loca-
tion updates—this is done by extending abstract classes or im-
plementing interfaces defined in the Google APIs. Thus, proper
replacement of all classes is necessary.

Our test app for this use case is Airbnb and we have posted
a video [1] that demonstrates this use case. The original Airbnb
app was not developed to use Amazon Maps, but our instrumented
Airbnb app uses Amazon Maps on an Amazon Fire HD tablet.

4.2 Runtime Permission
We have implemented a runtime permission mechanism that asks

a user to grant a permission to an app at run time, mirroring the
iOS permission model. Recent versions of Android have added
a similar runtime permission mechanism, introduced from version
6.0 [11]. Using Reptor we can enable such a mechanism for apps
running on older Android versions. Google reports that the mar-
ket share of Android 6.0 is 24% as of November 2016 [4], which
means that the majority of devices do not benefit from runtime per-
missions.

With Reptor, we can replace sensitive API calls, wrap them with
a permission-asking dialog, and ask a user for a permission. We

have posted a video [14] that demonstrates this use case using Twit-
ter app running on Android 4.4. Our instrumented Twitter app asks
a user to grant a permission to access the Internet at login, unlike
the original version that does not ask for any runtime permission.

To enable this, we have mainly replaced URLConnection.con-

nect(), even though typical apps (including Twitter) often use
HttpURLConnection.connect() to access the Internet. We do
this because, (1) HttpURLConnection inherits connect() from
URLConnection and (2) other classes such as HttpsURLConnec-
tion (used for HTTPS) also inherit connect() from URLConnec-

tion. Since Reptor correctly handles inheritance, we can uni-
formly enforce the runtime permission for both HTTP and HTTPS
by replacing URLConnection.connect().

4.3 HTTP-to-HTTPS Translator
Most web browsers such as Firefox, Chrome, and Opera pro-

vide an extension that automatically switches many major web-
sites from HTTP to HTTPS for more secure browsing. However,
Android platform does not provide such functionality for Android
apps. Thus, we have implemented an HTTP-to-HTTPS translator,
which automatically makes apps use HTTPS instead of HTTP if
HTTPS is available on a requested URL. To implement this, we
replace URL class so that it returns an HTTPS object instead of
an HTTP object. Although previous work [21] introduces this use
case, it in fact requires correct API replacement. We have posted a
video for this as well [6].

4.4 Improving Previous Systems
As mentioned in Section 2, previous systems [33, 32, 36] use call

replacement to augment certain API calls. Using Reptor, these sys-
tems can automatically get correct augmentation. In addition, pre-
vious instrumentation tools for Android [24, 21] discuss use cases
where in fact correct API replacement is necessary. These include
an API call timing profiler, an ad blocker, etc. Reptor can provide
correct API replacement for these use cases as well. Lastly, Blue-
Mountain [20] discusses a vision of replacing file system API calls
to automatically add advanced storage functionality. An example
can be automatic cloud integration as mentioned earlier, where lo-
cal storage read/write calls are augmented to perform not only local
operations but also cloud operations. Reptor can replace storage
APIs for BlueMountain.

5. EVALUATION
This section characterizes the overhead of Reptor with micro-

benchmark apps of our own as well as 1,200 real apps downloaded
from Google Play. Since our approach creates replacement cla-
sses for all platform classes, we have an extra layer that wraps the
Android APIs and creates extra objects of replacement class types.
Thus, we primarily measure the raw overhead of this extra layering,
i.e., the overhead of passing all API calls through our API virtual-
ization layer that does not implement any extra functionality.

We use Samsung Galaxy Nexus (1GB RAM, 64MB per-app heap
size unless otherwise mentioned) running Android 4.4 to measure
our run-time overhead. This is an older version of Android, and we
detail our reasons for using this in Section 6. For our app instru-
mentation, we run Reptor on a desktop PC with a 3.10 GHz Intel
Core i5-2400 CPU, 16GB of RAM, and a single 7200 RPM hard
disk. We have measured all our instrumentation-time overhead in
this setting.

Reptor has processed roughly 234.8M lines of code to produce
the results presented in this section. We have verified that the run-
time behavior is correct for every app Reptor transforms for our
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evaluation, using our automated UI testing system described in Sec-
tion 5.4 as well as deep manual code introspection.

5.1 Latency Overhead Characterization
We first characterize our latency overhead with a suite of micro-

benchmark apps. There are two types of calls we measure—regular
platform API calls that just go through our replacement classes, and
API calls that involve memory operations.
Latency for Regular Platform Calls: For measuring the over-
head of regular API calls, we have written an app that calls eleven
platform methods from five categories: device information, net-
work, sensing (GPS), storage, and reflection. Figure 10 shows
the result. The methods in the device information category are
getLine1Number (c1) and getDeviceID (c2). The methods in
the network category are getCellLocation (c3) and isWifi-

Connected (c4). The method in the sensing category is getLast-
KnownLocation (c5). The methods in the storage category are
putValueInPreference (c6), getValueFromPreference (c7),
putValueInFile (c8), getValueFromFile (c9), putValueIn-
SQLite (c10), and getValueFromSQLite (c11). The method in
the reflection category is forName (c12). Since the time consumed
by an individual call is too small to measure, we make 1K invo-
cations of each method, and consider this an atomic unit of mea-
surement. We perform 1K such measurements for a total of 1M
invocations of each method. Most calls do not show any notice-
able overhead except SQLite write (c10; 3.3%) and reflection class
lookup (c12; 358%). The reflection class lookup (forName) has the
overhead of string comparison and translation as mentioned in Sec-
tion 3.6. Regardless, since all the calls add less than 1 µs per call,
we believe that our approach would still be feasible in practice.
Call Latency for Memory Operations: The next micro-benchmark
app measures memory-related calls, including creating, initializing,
and retrieving data from two data structures—an array and a Hash-

Map. The app uses an integer array, a string array, and an Object

array as well as a HashMap. There are twelve methods we use:
createIntArray (m1), createStringArray (m2), createOb-
jectArray (m3), createHashMap (m4), initializeIntArray
(m5), initializeStringArray (m6), initializeObjectArr-
ay (m7), putValueInHashMap (m8), retrieveIntArray (m9),
retrieveStringArray (m10), retrieveObjectArray (m11),
and getValueFromHashMap (m12).

Since these method calls also take very little time, we combine
100 method calls as a unit of measurement, and repeat each mea-
surement 10K times for a total of 1M calls. While the overhead
for creating the data structures is negligible (the left plot in Fig-
ure 11), there is higher overhead involved in creating object arrays,
and to put/get values in/from HashMap (the right plot in Figure 11)).
Our manual analysis has revealed that the overhead for HashMap is
because Reptor also virtualizes the key and value classes used by
HashMap, resulting in nested levels of indirection. This is inevitable
as it is necessary for the correct functioning of the data structure.
While the percentage overhead seems high, we note that the over-
head in absolute time is very little (4-6 µs per call on average)
leading us to believe that this would also be feasible in practice.
Common compiler optimization techniques, e.g., method inlining,
will likely help as well.

5.2 Memory Overhead Characterization
Since our approach creates extra objects for replacement classes,

it adds to the memory requirements of an app. Thus, we study the
increase in memory requirements for three types of workload—
compute-intensive, basic memory, and memory-intensive.
Memory Performance on the Compute-Intensive App: For the
compute-intensive workload, we have written an app that calculates
π to n decimal place as a result of the infinite series:
π = 4∗(1−1/3+1/5−1/7+1/9...+1/(2n−1)−1/(2n+1))
For our tests, we set n = 100000000.

We then conduct heap size variation tests. This is performed
by changing the heap size given to the app during execution. As
shown in Figure 12 (a), we vary the heap size from 1MB to 64MB
for both the original and the instrumented versions. The purpose
is to measure how execution time varies depending on available
memory. Unlike the memory-related apps discussed below, our
compute-intensive app does not require a large amount of mem-
ory, hence does not exhibit much difference in performance across
different heap sizes.
Memory Performance for the Basic Memory App: For the basic
memory workload, we use the same micro-benchmark app from the
second part of Section 5.1, which creates, initializes, and retrieves
data from four data structures—an integer array, a string array, an
Object array, and a HashMap.

Figure 12 (b) shows the performance of the instrumented and
non-instrumented versions with varying the heap size from 8MB
to 64MB. Under the heap size of 8MB, our app throws an out-of-
memory exception, and we could not collect any data point. As
shown, smaller heap sizes require much longer execution times to
finish. This is due to the activities of the garbage collector; it gets
frequently invoked to reclaim the heap. However, both versions
exhibit similar overall behavior in terms of memory usage.
Memory Performance for the Memory-Intensive App: For the
memory-intensive workload, we have written an app that creates a
HashMap array with 10,000 elements, copies even elements to odd
elements, deletes all even elements, creates 5,000 elements again,
and assigns them to even elements. The app repeats this process
100 times. We emphasize that this has been done to create a rather
extreme case where we comprehensively stress-test all memory-
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related operations such as allocation, reading, writing, and deallo-
cation. This kind of memory usage is unrealistic, but effectively
fragments the memory and creates pressure on the garbage collec-
tor—it triggers the garbage collector to frequently scan the heap to
keep track of live objects with active references.

Figure 12 (c) shows the results. We vary the heap size from
10MB to 64MB. Our app throws an out-of-memory exception be-
low 10MB, which means that 10MB is roughly the minimum heap
size required to run the app. Besides this, we make two observa-
tions. First, the original version takes ∼98,000 seconds at 10MB;
we can extrapolate that the instrumented version roughly requires
10.5 MB of heap to finish within the same amount of time. This me-
ans that there is a slight increase in the minimum heap size require-
ment to maintain the same performance. Second, both the original
and the instrumented versions start to stabilize at 13 MB, and the
instrumented version takes approximately three times longer to fin-
ish at steady state. This is not too surprising as we have created
an extreme case that intentionally stresses the memory in various
ways.

5.3 Benchmark App Performance
In addition to our own micro-benchmark apps, we have down-

loaded and instrumented a benchmark app called PassMark [10]
from Google Play. We have chosen this app since it uses Java for
benchmarking code. PassMark has 19 benchmarks in 5 categories—
CPU, Disk, Memory, 2D, and 3D. We show average scores based
on 10 runs.

Figure 13 shows that most of the benchmarks report similar num-
bers except CPU. The reason is that there are six benchmarks in

CPU, and three of them (random string sort, encryption, and com-
pression) have shown a performance decrease by 40%-70%. To
determine the root cause of the overhead, we have manually exam-
ined the code and determined that it is due to a difference between
Android’s compiler and Soot, the baseline compiler we use to im-
plement Reptor—they produce distinct bytecode that gives differ-
ent performance results. To prove this point, we have used Soot to
just decompile and recompile PassMark without any of our Reptor
implementation, and tested the performance. The extra third bar in
Figure 13 shows the result. We can see that the CPU performance
numbers are similar between the second and the third bars.

5.4 Stock App Performance
Although micro-benchmarks provide a way to gauge different

types of overhead under very specific conditions, they do not nec-
essarily mirror real-world considerations. To demonstrate the feasi-
bility of Reptor in the real world, we have instrumented apps down-
loaded from Google Play, verified the correctness of our instrumen-
tation, and characterized the instrumentation performance as well
as the run-time performance. We have chosen 1,200 popular and
representative apps from Google Play. Below, we first discuss our
strategy for verifying instrumentation correctness. We then discuss
our overhead results.

Instrumentation Correctness: With 1,200 real apps, we have
verified the instrumentation correctness of Reptor. Our verification
consists of two steps—instrumentation-time validation and run-time
testing. First, after we instrument an app through Reptor, we pass
the instrumented app through a validator that we have developed.
Our validator checks static properties of app code, such as type
matching, local variable declaration correctness, method declara-
tion correctness, etc. In the end, this static validator makes sure
that the Java bytecode produced by our instrumentation for an app
is not malformed (to the best it can).

Second, we verify the run-time correctness of an instrumented
app by using an automated UI testing system that we have also
developed. Our UI testing system leverages Android’s UI Automa-
tor [2] which can inspect all UI elements and their hierarchy for an
app running on a device. Using this information, it generates ran-
dom UI events, such as button clicks and text input, and tests the
run-time behavior of an app. It also captures all logs that an app
generates during testing using adb (Android Debugging Bridge).

With this UI testing system, we run an app both with and without
Reptor’s instrumentation. After that, we compare the logs produced
by the instrumented version of the app to the logs produced by the
original version. If we find that an instrumented app has finished
its execution without crashing and has not produced any extra ex-



Category Examples Inst. Time Avg.
(Min./Max.)

APK Size Avg.
(Min./Max.)

APK Size Increase Avg.
(Min./Max.)

LoC Avg.
(Min./Max.)

Loc Increase Avg.
(Min./Max.)

Game Farm Heroes Saga, Glow Hockey,
Turbo Driving Racing 3D

85.7s
(22.5s/248.1s)

24.5M
(6.2M/99.7M)

160.7K
(31.0K/1.3M)

220.4K
(2.0K/681.0K)

330.3K
(77.0K/888.0K)

Entertainment Xbox 360 SmartGlass,
Roku, TWC TV

79.9s
(22.5s/308.5s)

9.0M
(655.4K/54.2M)

410.0K
(5.0K/2.3M)

210.7K
(4.0K/802.0K)

346.3K
(102.0K/839.0K)

Media SiriusXM, Marvel Unlimited,
Merriam-Webster

60.6s
(12.0s/212.9s)

6.7M
(38.3K/49.8M)

366.0K
(74.0K/2.0M)

149.2K
(1.0K/595.0K)

266.0K
(67.0K/745.0K)

Education NeuroNation, NASA,
Mobile Learn (Blackboard)

63.7s
(13.1s/192.3s)

8.4M
(1014.7K/45.0M)

307.2K
(475.0K/1.1M)

153.2K
(1.0K/591.0K)

279.4K
(72.0K/803.0K)

Personalization Backgrounds HD, Twemoji,
XFINITY home

53.3s
(12.4s/303.2s)

5.9M
(128.8K/54.7M)

311.6K
(89.0K/1.0M)

120.5K
(1.0K/683.0K)

234.1K
(68.0K/821.0K)

Productivity Wunderlist, Google Now Launcher,
Microsoft Office Mobile

60.9s
(13.4s/228.6s)

3.4M
(336.7K/27.3M)

409.0K
(390.0K/1.8M)

143.2K
(1.0K/804.0K)

263.2K
(82.0K/772.0K)

Business Mint, Chase Mobile,
Microsoft Remote Desktop

68.4s
(13.1s/247.8s)

6.5M
(397.9K/46.2M)

386.3K
(19.0K/1.8M)

174.9K
(2.0K/735.0K)

315.6K
(76.0K/902.0K)

Social WordPress, GasBuddy,
Pixlr

87.7s
(18.9s/312.4s)

10.3M
(892.3K/48.4M)

340.4K
(64.0K/1.5M)

242.0K
(2.0K/714.0K)

372.4K
(96.0K/826.0K)

Total N/A 70.0s
(12.0s/312.4s)

9.4M
(38.3K/99.7M)

336.4K
(5.0K/2.3M)

176.8K
(1.2K/804.2K)

300.9K
(67.0K/902.0K)

Table 2: Instrumentation Results for 1200 Popular Apps (150 apps in each category)
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Figure 14: Heap Usage (*Instrumented apps): The x-axis shows elapsed time in seconds.

ception compared to the original, we mark that the verification has
passed successfully for the app.

Using these verification steps, we have first verified that all 1,200
apps have passed our validator after instrumentation. In addition,
we have verified that no instrumented app crashed during our UI
testing and there is no extra exception thrown by an instrumented
app compared to its original version. We have run each of 1,200
apps 10 times for 30 seconds, both with and without Reptor instru-
mentation. The total testing time is 100 hours.

Instrumentation Overhead: Table 2 shows our instrumenta-
tion overhead results. We have re-categorized 1,200 apps into eight
categories based on Google’s categorization to concisely present
our results. Each category contains 150 apps. We show average,
maximum, and minimum values for instrumentation times, origi-
nal APK sizes, APK size increases after instrumentation, original
lines of code (LoC), and LoC increases after instrumentation. We
observe that the instrumentation time for each app is modest and
finishes in 6 minutes or less. However, since our design generates
replacement classes, there is an inevitable cost of static code size
increase. On average, the APK size increases by 21.8% and the
LoC by 538.9%. The large percentage increase in average LoC is
partly because we have many small apps that have a far fewer num-
ber of app classes compared to the platform classes they use. In
general, we expect that other standard compiler optimization tech-
niques will help reduce our code size.

Heap Usage and Energy Consumption Overhead: For more
realistic evaluation, we have manually used five apps and measured
two aspects—heap usage and energy consumption. The apps are
WatchESPN, The Weather Channel (TWC), Temple Run, Adobe
Acrobat Reader, and Audible. We have played video clips on Watch-
ESPN, looked up weather on TWC, played a game on Temple
Run, viewed PDF files on Adobe Acrobat Reader, and played audio
books on Audible.

App Name Average (J) Std Dev (J)

WatchESPN 781.5 20.0
WatchESPN* 790.3 17.4

The Weather Channel 170.2 13.6
The Weather Channel* 181.4 8.9

Temple Run 991.5 29.5
Temple Run* 993.0 22.3

Adobe Acrobat Reader 838.3 8.9
Adobe Acrobat Reader* 850.0 10.1

Audible 787.5 18.5
Audible* 778.0 8.9

Table 3: Energy Consumption (*Instrumented apps)

Shown in Figure 14 is the heap usage over time. We use Android
tools to record heap allocation sizes every 0.3s while we run each
app for 60s. While the heap usage is slightly higher for the instru-
mented apps, both versions show similar behavior across the five
apps. At steady state (typically around 40s ∼ 50s), the worst-case
heap usage increase we observe is 4.2% for WatchESPN, 9.5% for
TWC, 0.6% for Temple Run, 8.4% for Adobe Acrobat Reader, and
0.6% for Audible.

For energy measurement, we have used a Monsoon Power Mon-
itor and run the five apps for ten minutes five times. Table 3 shows
the results. All the averages are within statistical deviations of each
other indicating that there is no significant energy overhead added
by our instrumentation.

We have also created a video [13] of two users playing Temple
Run side-by-side. The game was instrumented to display notifi-
cations whenever a touch event occurred. We have observed that
there is no noticeable delays in game play, even though we use a
Galaxy Nexus released five years ago.



6. DISCUSSION
Security: A potential concern for any instrumentation tool in-

cluding Reptor is that it can be abused to inject malicious code.
While we acknowledge that we do not improve the status quo, we
argue that malicious actors do not need Reptor to inject malicious
code. There are many tools available already for creating malicious
apps as evidenced by the massive quantity of malicious repackaged
apps [40]. Using these tools, malicious actors are already down-
loading paid apps, injecting malicious code to the apps, and pub-
lishing them on online stores as free versions.

Ethics: Another common concern that instrumentation tools raise
is whether or not it is ethical (or even legal) to modify apps that
other developers have published. For this, we envision a new ecosys-
tem where there are two different types of developers that cooper-
ate to provide better experiences for end users—app developers and
extension developers. App developers write and distribute apps,
and extension developers write and distribute new platform API ex-
tensions. In this ecosystem, Reptor becomes a tool that integrates
extensions and apps.

Experience with Real Apps: In the early stage of our develop-
ment, we hand-crafted app code that implements common uses of
platform classes, and made Reptor work correctly with it. Our hope
was that by doing so, we would eventually be able to transform at
least a small set of real apps. However, it turns out that real apps,
even when their code sizes are small, are often non-trivial and use
platform classes in a wide variety of ways. Thus, it was required
for us to thoroughly examine the Android documentation and the
Java specification to determine what we need to address—it was
impossible to transform real apps until we did it.

Formal Correctness: A formal proof is the most rigorous way
to show Reptor’s correctness and completeness. However, it is an
extremely difficult task since we essentially need a formal proof
of our implementation against two highly complex systems, Java
and Android. Thus, we take a more pragmatic approach and show
the correctness and completeness of Reptor empirically by instru-
menting over a thousand apps and two hundred million lines of
code. The apps we instrument are non-trivial, real-world apps that
contain complex code. By instrumenting large bodies of code we
have a good estimation of completeness across Java features and
Android constructs.

API 19 (Android 4.4): We started our development with API 19
roughly two and a half years ago when it was the latest release, and
have not changed the version since. This is because API 19 is still a
popular version and we want to keep our development environment
stable. The biggest difference in recent versions is the new VM
(ART), but our basic idea of using replacement classes do not have
any dependency on specific VMs or versions. This is because we
generate a list of all platform classes automatically by leveraging
a compiler (Soot), and from the list, we create corresponding re-
placement classes. This can be done on any Android API version.
It is our future work to transition to the latest version.

7. RELATED WORK
Traditional techniques that allow extensibility in desktop envi-

ronments do not provide good deployability on mobile platforms,
since they require low-level system access. These include library
overloading (using LD PRELOAD or Java class loaders), and syscall
library or Java VM hooks. Other techniques, such as Java byte-
code rewriting [37, 35, 19], I-ARM-Droid [22], SIF [24], Ret-
roSkeleton [21], mach inject [34], Detours [26], and Windows
Hooks [30], enable general instrumentation specific to a language,
a platform, or a combination of them. Reptor addresses a different

set of challenges previously not addressed by these techniques, i.e.,
how to replace a platform class with an app-level replacement class
on Android. In addition, Reptor provides a more general form of
proxy objects (e.g. [28]) and is able to handle the situation where
certain classes (e.g., platform classes in Android) are not allowed
to be proxied. Aspects (e.g., AspectJ [29]) provides an ability to
instrument, but requires access to all target classes to instrument
them.

Aurasium [38] and Boxify [17] have proposed app-level tech-
niques for access control and sandboxing. Aurasium intercepts
the Global Offset Table (GOT) of a process, and redirects libc

calls; Boxify monitors and intercepts inter-process communication
channels and system calls. These approaches are complementary to
Reptor as they provide different capabilities for intercepting native
API calls.

Reference Hijacking [39] has recently proposed an app-level tech-
nique that allows an app to load custom system libraries. It inter-
cepts the launch sequence of an Android app, loads custom system
libraries, and restarts the app with the newly-loaded libraries. How-
ever, this approach has a few limitations compared to Reptor. First,
system libraries are customized for and specific to vendors (e.g.,
Google, Amazon, or Samsung), Android versions, target devices,
or some combinations of them. It is difficult, if not impossible, for
a third party to keep track of the dependencies and generate their
own custom system libraries for each and every dependency. Sec-
ond, their technique can only be applied to system libraries, thus
cannot handle Google Play Services which is installed as a system
app, not a library. Third, there is also memory and storage over-
head since a modified system library needs to be distributed in its
entirety. Fourth, the technique relies on the particular app launch
sequence of Android, and is difficult to generalize even conceptu-
ally.

Many previous systems leverage app instrumentation as a tool to
achieve different goals, such as UI automation [25], performance
monitoring [33], mobile network control [31], and privacy [27, 18].
These systems further prove the applicability of app instrumenta-
tion, and Reptor provides a general way of replacing API classes.

8. CONCLUSIONS
In this paper, we have proposed a new system called Reptor that

enables API virtualization on Android for practical openness. Rep-
tor allows third-party developers to modify, instrument, or extend
Android platform API call behavior as needed and deploy their
modifications seamlessly. The practicality of Reptor comes from
the fact that it takes an app-layer approach; it does not require
any platform-level changes. Reptor combines many techniques
to address the challenges specific to Android, including the use
of replacement classes, super replacement classes, concrete cla-
sses for interfaces, class hierarchy mirroring, as well as selective
code rewriting. Using various micro-benchmarks and real apps
from Google Play, our evaluation proves that Reptor incurs min-
imal overhead in performance and energy consumption, and only
modest overhead in terms of memory.
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