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Abstract—This paper proposes Mimic, an automated UI com-
patibility testing system for Android apps. Mimic is designed
specifically for comparing the UI behavior of an app across
different devices, different Android versions, and different app
versions. This design choice stems from a common problem that
Android developers and researchers face—how to test whether
or not an app behaves consistently across different environments
or internal changes. Mimic allows Android app developers to
easily perform backward and forward compatibility testing for
their apps. It also enables a clear comparison between a stable
version of app and a newer version of app. In doing so,
Mimic allows multiple testing strategies to be used, such as
randomized or sequential testing. Finally, Mimic programming
model allows such tests to be scripted with much less developer
effort than other comparable systems. Additionally, Mimic allows
parallel testing with multiple testing devices and thereby speeds
up testing time. To demonstrate these capabilities, we perform
extensive tests for each of the scenarios described above. Our
results show that Mimic is effective in detecting forward and
backward compatibility issues, and verify runtime behavior of
apps. Our evaluation also shows that Mimic significantly reduces
the development burden for developers.

Keywords—Mobile apps; UI compatibility testing; Parallel
testing; Programming model;

I. INTRODUCTION

This paper proposes Mimic, an automated UI compatibility

testing system for Android. It supports what we call follow-
the-leader model of testing—multiple testing devices are used

in parallel but one device becomes a “leader” that performs a

sequence of UI actions. All other devices follow the leader and

perform the same sequence of UI actions. Using this testing

model, Mimic reports UI compatibility problems occurred dur-

ing a testing run, such as different UI paths taken, different UI

structures displayed, different exceptions thrown, differences

in UI performance, etc. In essence, the main focus of Mimic

is UI compatibility testing.

This design choice of Mimic stems from several testing

needs and the lack of a practical testing system that meets

those needs. In particular, there are four common testing

scenarios that call for UI compatibility testing as we detail

in Section II—(i) version compatibility testing, where de-

velopers test their apps on different Android API versions,

(ii) device compatibility testing, where developers test their

apps on different Android devices, (iii) third-party library
testing, where developers test new versions of third-party

libraries with their existing apps, and (iv) instrumentation
testing, where mobile systems researchers test the correctness

of their bytecode instrumentation techniques [32], [17], [19]

by comparing instrumented apps to original apps. All of

these scenarios require UI compatibility testing, i.e., testers

want to test and compare how the UIs of apps display and

behave across different environments. We further detail each

of these scenarios and the need for UI compatibility testing in

Section II.

Mobile testing has several unique challenges including UI

version compatibility and consistency across devices, app

and OS versions. Mimic addresses the above challenges by

providing the following two main features — an (i) easy-to-use

programming model specifically designed for UI compatibility

testing, and (ii) a runtime that manages multiple devices and

app or Android versions. As mentioned earlier, it implements

follow-the-leader testing model. The runtime also captures

visual differences of an app’s UI across different versions or

devices using image processing techniques.

To the best of our knowledge, there is no previous work

that focuses on UI compatibility testing for mobile apps.

As we discuss in Section VII, existing systems, such as

DynoDroid [27], A3E [16], and others, focus on uncovering

bugs within an app or examining the security or performance

aspects of an app, rather than comparing how an app behaves

across different versions or environments.

Our evaluation shows that Mimic is effective in finding UI

compatibility problems in real Android apps and FicFinder

data set. We have used Mimic to test 400 popular apps

downloaded from Google Play on four different Android

platform versions; we have also downloaded multiple versions

of the same apps and tested them using Mimic. In various

scenarios we have tested, Mimic has discovered that 15 apps

have backward and forward compatibility problems across

different Android versions (including well-known apps such as

WatchESPN and Yelp). Mimic has also discovered that 5 apps

throw different exceptions across different app versions. With

FicFinder data set, Mimic has detected compatibility problems

including 8 errors and 4 distorted UI issues, and performance

problems such as four lagging UI problems, two memory bloat

problems, and one battery drain problem. Section V discusses

these and other findings in more detail.

II. MOTIVATION

Prior research [16] shows how ineffective humans are at

manually exploring app UIs. Humans can cover only 30.08%
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of the app screens and 6.46% of the app methods according

to the research. This further argues for automated testing of

app UI.

There is little prior work on UI compatibility testing despite

the need. For example, the FicFinder [35] work conducted

an empirical study demonstrating 191 compatibility bugs and

published a data set with 27 open-source apps that could be

used to reproduce such bugs. Another paper [20] tests seven

popular existing tools, and it states that none of the tools

can handle the UI compatibility issues correctly. The paper

mentions the need for a specific tool for UI compatibility

testing. Unfortunately, there is no existing system that supports

compatibility testing of UIs as discussed in Section VII. This

section presents a set of scenarios under which specific UI

testing functionality for mobile apps is required.

A. UI Compatibility Testing Scenarios

App developers and researchers frequently face the need

for comparing app UI behavior across different app versions,

Android versions, and/or devices. Here are four representative

testing scenarios that require UI compatibility comparison.

In the following sections, we define UI compatibility as

consistent UI looks and behavior.

Forward-Backward Compatibility: According to Android

Dashboard from Google [1], Android platform API versions

from 10 to 27 are in active use as of July, 2018. Google

has an aggressive release cycle of new Android APIs, and

has been releasing a new version once or twice a year [2].

App developers need to ensure correctness across all previous

Android versions (backward compatibility) as well as future

releases (forward compatibility). This backward or forward

compatibility testing requires UI compatibility testing across

different Android versions.

Device Heterogeneity: There are many types of Android

devices ranging from smartphones to tablets, with different

screen sizes and resolutions. In order for apps to be UI

compatible with a wide set of devices, developers need to test

their apps on different types of devices.

Library Versioning: Most Android apps rely on third-

party libraries for value-added functionality such as advertis-

ing, Google Play Services (e.g., Google Maps), visualization,

image processing (e.g., OpenCV), and others. However, these

libraries evolve in parallel with newer features being added to

them over time. When these third-party libraries release a new

version, developers need to test if their existing apps provide

the same consistent user experience across different third party

library versions. This requires UI compatibility testing across

different versions.

App Instrumentation: Many researchers and companies

are interested in using Java bytecode instrumentation tech-

niques that can modify existing apps without having any

source code. Examples include improving energy efficiency

for always-on sensing [32], providing mobile deep links [17],

or developing novel data management systems [19]. To test

the correctness of such systems, researchers automatically

transform existing Android apps with their instrumentation

techniques (including the UI), and compare the behavior of

the instrumented apps to the (uninstrumented) original apps.

This requires UI compatibility testing.

B. Requirements for UI Compatibility Testing

Configurability: A basic requirement is the ability to easily

run the same app on multiple devices using different app

versions, Android versions, and third-party library versions for

the purpose of comparing the UI across. Testers should be able

to configure the set of devices they have, and set them up as

required for their testing. They should also be able to install

and configure the software platform on each of the devices to

exactly set up the tests they would like to run.

Comparing UI Structures: Fundamental to UI compati-

bility testing is the ability to query UI structures and iterate

through individual elements, e.g., buttons, menu elements, and

text boxes. With this ability, a tester can ensure consistent UI

experience by iterating through all elements, interacting with

each of them, and comparing the experience with other runs

of the same app in different environments.

Testing Modes: Some testers might want to thoroughly

evaluate UI compatibility by iterating through all elements in a

systematic manner, while other testers might want to perform

a quick check of a subset of UI elements to ensure that their

recent change has not affected the UI adversely. This advocates

for both sequential and randomized UI testing.

Visual Inspection: A challenge when dealing with different

form factors of mobile devices (e.g., screen size, resolution,

and orientation) is the ability to accurately compare screens as

viewed by the user. Thus, a testing framework needs to provide

some form of automated comparison of the UIs displayed

on different screens without requiring manual intervention, in

order to enable scalable testing.

Interaction Performance: Even if two runs of an app (in

different environments) look similar visually, there might be

a difference in the performance such as greater lag between

devices. This is an important problem to identify as this breaks

consistent UI experience across app runs. A testing framework

must be able to check for not just consistency of UI elements

but to identify differences in performance parameters such as

latency and memory use.

Motivated by these challenges, we have designed Mimic.

The next section with describe the Mimic design in detail.

III. MIMIC DESIGN

Figure 1 shows the Mimic architecture. Mimic takes as input

a set of apps and a Mimic script. The Mimic runtime that runs

on a desktop that (described in subsection IV-A) executes the

script, and runs specified tests on the set of devices connected.

Mimic is designed to be able to scale the number of apps tested

as well as the number of devices used. This architecture is

managed by the Mimic programming model which provides

methods for the setup of the runtime, configuring the set of

devices that will be used for testing, specifying UI tests to be

run, and the specification of desirable properties of the test

runs that need to be logged. While it might be possible to

247



Mimic Runtime

Mimic script

Device Set

APK set

Fig. 1. Mimic Architecture

1 from mimic import Mimic
2 # Key: device type,
3 # Value: tuple(# serial, Android version, apk under test)
4 experiment_settings = {
5 "leader": (("0361676e094dd2ed", "4.4", "demo_v1.0.apk"),),
6 "follower": (("072dca96d0083871", "4.4", "demo_v1.1.apk"),)
7 }
8 Mimic(experiment_settings)

Fig. 2. Example Mimic Configuration

write similar scripts by a tester who understands the nuances

of Android devices and tools, Mimic makes this easier with
a small set of APIs that provide high-level abstractions and
callbacks specifically designed for UI compatibility testing.

A. Mimic Programming Model

Our programming model provides easy abstractions to con-

figure and set up testing environments with multiple devices,

Android versions and app versions. It abstracts away this com-

plexity by providing a single-device, single-version illusion,

where testers write their testing logic as if they were using

a single device and a single version of an app. Our imple-

mentation described in Section IV handles the differences

of multiple devices and versions. Further, our programming

model provides the ability to compose testing different aspects

of Android apps, by providing an expressive, callback based

abstractions for writing tests.

Abstractions for Test Configuration: We provide a simple

dictionary abstraction for testers to express their requirements.

Figure 2 shows a code snippet that initializes two devices to

compare two different versions of an app. In line 5, the script

configures a leader device by providing three parameters—

a device serial number, an Android version, and an app file

name. In line 6, the script configures a follower device,

also with three parameters. In line 8, the script loads the

configuration and initializes the Mimic runtime. When the

Mimic runtime executes this script, it finds two devices using

the serial numbers, installs Android 4.4 on both devices, and

installs the respective versions of the app on the appropriate

devices for testing.

Abstractions for Testing: Mimic provides an event-driven

programming model and abstractions, so that testers only need

to handle important events related to UI compatibility testing.

These abstractions and the event-driven programming model

simplify the process of writing a test script. Table I shows

the set of five callbacks that the Mimic programming model

1 def onUITreeChanged(tree):
2 return tree.sort(sortType="random")
3

4 def handleNextUIObject(ui):
5 if ui.clickable:
6 ui.click.wait(3000) # the unit is ms

Fig. 3. Randomized Testing Example

provides and Table II lists the set of methods for configura-

tion and UI testing. A tester can utilize these callbacks and

interfaces for UI compatibility testing.

The most important abstraction is UITree; when an app

launches or a user action occurs on an already-opened app,

the app shows a new app window (or activity in Android’s

terminology). An activity is represented as a tree with three

types of UI elements: (i) the root, which is the activity object

itself, (ii) the middle UI elements that are containers of other

UI elements, and (iii) the bottom-most leaves of UI elements.

We capture this using our UITree abstraction. It contains

a list of UI elements within an activity. We encapsulate each

UI element with our UIObject abstraction, and by default, a

UITree keeps all elements in an activity in its list in a random

order. However, testers can modify the list membership and the

ordering. Furthermore, UITree provides useful helper meth-

ods and abstractions. For example, a tester can sort the order

of UIObjects using sort(), find a specific UIObject
with select(), and check if all UIObjects are tested with

completedTest. Table III shows the summary of UITree.

Along with UITree, we provide two callbacks that testers

need to implement. These callbacks are designed to allow

testers to handle only important events relevant to UI com-

patibility testing. Primarily, there are two categories of events

that UI compatibility testing is interested in handling. The

first category is new UI tree events—handling an event of

this kind allows testers to perform specific actions when a

new UI tree comes up (i.e., when a new activity comes up).

For example, a tester might want to measure how long it

has taken to make a transition from a previous activity to a

new activity; or, another tester might want to analyze the UI

elements within an activity and skip the testing for previously-

tested UI elements. Our programming model defines a callback

(onUITreeChanged()) to signal the appearance of a new

UI tree. Testers can implement this callback and write their

testing logic pertinent to an entire activity.

The second category of events is related to handling in-

dividual UI elements. Actual testing only happens when a

tester interacts with a UI element and performs a certain

action, e.g., a button click. Thus, we provide a callback

(handleNextUIObject()) that gets invoked with the next

UI element to process within UITree. This is possible

because UITree keeps a list of UIObjects, and when

an invocation of handleNextUIObject() returns, it gets

called again with the next UIObject in the list.

Figure 3 and Figure 4 show two examples of how testers

can use our programming model. These are common strategies

that testers use. First, Figure 3 shows a randomized testing

strategy, where a tester randomly sorts all UI elements in a

new UI tree (lines 1-2) and performs a click on the first UI
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TABLE I
CALLBACKS OF MIMIC PROGRAMMING MODEL

Callback Interface Description
UITree onUITreeChanged(UITree tree) Called when there is a new UITree event.

void handleNextUIObject(UIObject ui)
Called when there is a new UIObject to test. A UIObject specifies one UI element such as Button or
Text.

void onBatteryChanged(Battery battery)
Called when the battery level of an app under test has changed. A Battery represents battery usage
statistics for an app under test.

void onHeapUsageChanged(Heap heap)
Called when the heap usage of an app under test has updated. A Heap represents heap usage for an app
under test.

void onTestingTimeChanged(TestingTime time) Called when the total testing time has updated.

TABLE II
MIMIC PROGRAMMING INTERFACE: 1 denotes system-wide functionality, and 2 denotes device-specific functionality.

Programming Interface Description
void terminate(msg)1 Terminate all testing with the given message.

void detach(serial)1 Remove the device of the given serial number from Mimic.

void attach(serial)1 Add the device of the given serial number to Mimic.

bool diffUITree(threshold)1 Return True if the leader screen and one of follower screens are different over the given threshold.

DeviceInfo info()2 Retrieve device information such as the screen width, height, rotation, product name, Android version, etc.

void click()2 Perform a button click.

void longClick()2 Perform a long click action on the object.

void drag(x,y)2 Drag the UI object to other point.

void swipe(direction)2 Perform a swipe action.

void press(buttonName)2 Press the given button. Supported home, back, recent, volumeUp, volumeDown, power, etc.

void wait(time)2 Wait the given time for the next action.

bool contains(**kwargs)
2 Return Ture if this object contains a mapping for the given keyworded variables. It can be called with Device, UITree, and

UIObject. Supported keywords: text, className, description, packageName, resourceId, etc.

void screenshot(fileName)2 Take a screenshot and save it with a given name.

TABLE III
THE UITREE ABSTRACTION

Attribute/Method Description
device Device instance on which this UITree is running.

previousUITree The previous UITree of this UITree.

completedTest Flag for weather all Objects in this UITree are tested or not.

loadingTime Load time of this UITree (from performing a UI action to loading this UITree).

bool contains(**kwargs)
Return Ture if this UITree contains a mapping for the given keyworded variables. Supported keywords: text, className, description,
packageName, resourceId, etc.

UIObject select(**kwargs)
Return the UIObject to which the given keyword variables are mapped in UITree, or None if the UITree contains no mapping for the
given keyword variables.

UITree sort(sortType) Returns a new UITree with those UIObjects in sorted order based on the given sortType.

1 def onUITreeChanged(tree):
2 if tree.previousUITree.completedTest != True:
3 tree.device.press(’back’)
4 return tree.sort(sortType="untested")
5

6 def handleNextUIObject(ui):
7 if ui.clickable:
8 ui.click.wait(3000) # the unit is ms

Fig. 4. Sequential Testing Example

element in the list for the UI tree (lines 4-6). It also shows

an example use of wait(), which allows testers to wait a

certain period of time for the next action. Second, Figure 4

shows a sequential testing strategy, where a tester tests every

UI element on every activity. If a UI element action makes

the app to transition to a new activity, then the testing script

presses the back button to go back to the previous activity if

the previous activity still contains more UI elements to test

(lines 1-4). These examples show how concisely a tester can

express testing logic.

In Section V, we show that simple randomized testing needs

11 lines of code using our programming model, while 178

lines of code is needed using Android UI Automator. The

main difference comes from the fact that we provide high-

level abstractions in the form of callbacks and take care of all

the plumbing work necessary. Using Android UI Automator,

1 def onHeapUsageChanged(heap):
2 with open(heap.device+"_heapUsage.log", "a") as log:
3 log.write(str(Mimic.currentUItree) + " " + \
4 str(Mimic.currentUIObject) + " " + \
5 str(heap.total_heap_allocation) + "\n")
6

7 def onUITreeChanged(tree):
8 if tree.loadingTime > 200: # the unit is ms
9 Mimic.terminate("GUI lagging")

10

11 return tree.sort(’untested’)

Fig. 5. Performance Testing Example

testers have the burden of checking if there is a new UI

tree, getting all the UI elements from the tree, checking their

properties (e.g., whether or not they are clickable), etc. This

makes a significant difference in terms of development effort.

Abstractions for Performance Monitoring: Previous

research [26] has shown that are three predominant types of

performance bugs in Android apps. They are GUI latency,

energy leaks, and memory bloat. Mimic programming

model provides mechanisms for monitoring the resources

related to these bugs and provides callbacks so the test

writer can easily specify testing actions to compare how

their apps behave across different devices and versions.

Specifically, our programming model provides three callbacks:

onHeapUsageChanged(), onBatteryChanged(),
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Fig. 6. Mimic Runtime Components

and onTestingTimeChanged(), which the programmer

can leverage to invoke testing.

onHeapUsageChanged() is invoked when the heap

usage of an app has changed. This is configurable, and by

default, it is triggered every 10kB. onBatteryChanged()
is called when the battery level changes. onTestingTime-
Changed() is invoked when the total testing time changes.

This is also configurable, and by default, it is triggered every 1

second. These methods allow the tester the ability to log these

changes along with other state such as the UI tree to compare

later. Figure 5 shows an example, where the code logs how

much the heap usage has changed, what is the state of the UI,

and what is the current UI object being interacted with.

Helper Methods for UI Difference Monitoring: An essen-

tial aspect of UI compatibility testing is comparing how an app

displays its UI across different versions and devices. In order

to support this, our programming model provides two methods

for capturing and comparing screenshots. screenshot()
method takes a screenshot. diffUITree() method returns

true if any of the followers is displaying a different UI from

that of the leader. diffUITree() takes a threshold as an

input parameter, which indicates the percentage of difference.

For example, diffUITree(5) returns true when any of the

follower’s UI is more than 5% different from the leader’s.

We use image processing to implement this as we describe in

Section IV-B.

IV. MIMIC IMPLEMENTATION

This section describes the Mimic runtime as well as how

we enable visual inspection. Our prototype is roughly 2,500

lines of Python code.

A. Mimic Runtime

The Mimic runtime provides the environment for the exe-

cution of a Mimic script. It runs on a computer, controls all

Android devices connected to it via USB, and displays test

results. Figure 6 shows the components of the runtime. The

main component is Device Controller that executes a Mimic

script and controls the entire flow of testing. While executing

a script, it interacts with testing devices using Android tools

(mainly, adb and UI Automator [3]), and leverages other

components. This section describes the flow of execution and

the components of the runtime.

Initialization: Device Controller first installs an Android

OS images as well as testing apps on different devices and

Main activity Picture activity Music activity Main activity Music activity

(a) Demo app 1.0* (b) Demo app 1.1

Fig. 7. Two Different Versions of Demo Apps. * denotes the leader device.
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(a) Graph for Demo app 1.0
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.Music_play1

4
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(b) Graph for Demo app 1.1

Package Activity UI element Not visited Not available

Fig. 8. Graph Representations for Demo Apps in Figure 7. The numbers
denote the visiting nodes order.

configures each device. Android Image Archive stores stock

Android OS images; our implementation currently supports

ten images ranging from Android 2.3.6 to 6.0.1.

Testing Logic Execution: After initialization, Device Con-

troller launches testing apps on all devices. It then periodically

monitors each device for UI tree and resource status changes

(e.g., battery level). If any change is detected, Device Con-

troller invokes the appropriate callback provided by our pro-

gramming model. Device Controller monitors UI tree changes

using Android UI Automator, which enables the inspection

of UI elements and their hierarchy. Device Controller uses

adb to monitor resource status changes. Our periodicity of

monitoring is currently 0.1 seconds, and this is configurable.

When Device Controller detects a new UI tree (i.e., when

a new activity comes up on a device), it interacts with UI
Selector to filter out unnecessary UI elements. We filter UI

elements because there are many that are just containers for

other UI elements and are not typically necessary for testing.

For example, a simple button in Android that turns Wi-Fi on or

off requires multiple UI elements, e.g., a text box, an interact-

able button, and a container that groups all UI elements

together. A UI testing system would only be interested in the

button that is clickable. The UI selector removes non-leaf UI

elements as well as non-clickable ones from the UI hierarchy.

Testing Result Generation: After executing testing logic,
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Anroid 4.4* Anroid 5.0 Anroid 6.0.1

Fig. 9. Open GPS Tracker on Different Android Versions. * denotes the
leader device.

TABLE IV
UI DIFFERENCE INSPECTION USING THREE METHODS. * denotes

methods that Mimic uses.

Sample Testing
Image Type

Color
Histogram*

Template
Matching

Feature
Matching*

Different UI Color 47.86% 6.5% 21.69%

Different UI Position 2.6% 90.31% 31.56%

Absence of UI 16.57% 9.97% 31.1%

Device Controller provides testing results in two forms. First,

it uses Log Collector to capture all logs that testing apps gen-

erate. Device Controller can display individual logs as well as

deltas among the logs from different devices. Second, Device

Controller uses Graph Generator to display all UI transitions

that occurred during testing. This UI transition graph helps

testers visualize how different app instances behaved. Figure 7

and Figure 8 show visualizations of an example using a demo

app we have developed. There are two versions of this app.

The first version (v1.0) has three activities, Main, Picture,

and Music. However, the second version (v1.1) only has two

activities, Main and Music, and there are two more buttons in

the Music activity. We intentionally inject one run-time error

that causes the app to crash when the Show button on the

Picture activity is clicked.

Figure 8 shows an example run. Using our leader-follower

model, both versions execute the exact same sequence of UI

events. For v1.0, the unvisited node (the Show button) is due to

the run-time crash error that we inject; since the app crashes,

the button is not explored. For v1.1, the two unvisited nodes

(the second Play button and the corresponding Stop button)

are due to our leader-follower model; since the leader does not

have those buttons, they are not explored in the follower. Using

these graphs, testers can easily discover points of run-time

errors and compare UI differences across different versions.

B. Enabling Visual Inspection

As mentioned earlier, our programming model provides

screenshot() and diffUITree() to take and com-

pare screenshots. In our implementation, diffUITree()
computes a measure of change between the leader and the

followers. We do this by (i) taking a screenshot across test-

ing devices, (ii) masking the top status bar and the bottom

navigation bar because each Android version has the different

size of status and navigation bars, and (iii) calculating the

difference between the screenshots using both color histogram

difference [7] and feature matching [6].

TABLE V
STATISTICS OF 400 APPS

Category # of Apps Example Average App Size
Lifestyle 42 XFINITY Home 15.0M

Entertainment 49 Vimeo 14.2M

Travel 56 TripAdvisor 13.1M

Sports 53 ESPN 20.0M

Personization 52 Paypal Cash 11.9M

Education 43 Bookshelf 14.0M

Tools 55 Go Security 9.9M

Photography 50 Open Camera 17.4M

Total 400 N/A 14.4M

To calculate the UI difference, we have experimented with

three popular methods from OpenCV [9]—histogram differ-

ence [7], template matching [12], and feature matching [6].

Using original screen image of Starbucks app, we create three

different sample image types that are possible due to version

differences, and we compare each sample image type with

the original image using three methods mentioned. Table IV

shows percentage differences from this comparison. While

results of template matching show an inaccuracy on all three

sample image types, color histogram difference and feature

matching have given us satisfactory results either on color

difference or on UI feature difference. Mimic takes higher

percentage difference between color histogram difference and

feature matching.

While we have used particular image processing mecha-

nisms, it is also easy to create other custom mechanisms to

quantify visual difference between two screens. Figure 9 shows

an example of display differences across different Android ver-

sions from 4.4 to 6.0.1. In this example, the leader screenshot

is about 11.84% different from the image on Android 5.0, and

about 65.01% different from the image on Android 6.0.1. By

using both diffUITree() and screenshot(), a tester

can efficiently detect the display distortion.

V. EVALUATION

In this section, we demonstrate Mimic’s capabilities in

three ways. To demonstrate effectiveness of our programming

model, we compare the lines of code necessary to implement

different testing strategies using Mimic and Android UI Au-

tomator. Second, we evaluate Mimic in different scenarios—

forward compatibility testing, backward compatibility testing,

different app version testing, and instrumentation testing. For

each testing scenario, we have used separate 100 Android

apps due to different aspects that we want to evaluate. For

each testing scenario, we explain the details of how we have

picked the apps. Table V shows the statistics of the total 400

apps. Third, we conduct an experiment to show that Mimic

correctly catches compatibility differences. For this, we use

14 apps from the FicFinder [35] data set, which are real apps

downloaded from open-source repositories such as GitHub

with verified UI compatibility problems.

We have used 10 Android devices for our experiments—

three Nexus S (512MB RAM) running Android versions

(2.3.6, 4.0.4, and 4.1.2), two Galaxy Nexus (1GB RAM)

running (4.1.1 and 4.2.1), four Nexus 5 (2GB RAM) running

(4.4, 5.0, 5.1, and 6.0), and one Galaxy S4 (2GB RAM)

running Android 4.4.
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TABLE VI
A SUMMARY OF DEVELOPMENT EFFORT. 1 denotes it runs on a single

device independently, 2 means that it runs across all testing devices.

Testing Logic Framework LoC Testing
Environment

Randomized testing1 UI Automator 178 Non-automated

Sequential testing1 UI Automator 199 Non-automated

Randomized testing2 Mimic 11 Automated

Sequential testing2 Mimic 13 Automated

A. Development Effort

We demonstrate the effectiveness of our programming

model by comparing the lines of code necessary to implement

randomized testing and sequential testing. The randomized

testing strategy we implement picks one clickable UI element

(e.g., a button or a text input box), performs an action on

it (e.g., a button click), and repeats it until either there is no

clickable UI element or the app crashes. The sequential testing

strategy we implement tests each and every UI element one

by one. We have implemented both strategies using Android

UI Automator and Mimic.

Mimic programming model enables compact descriptions

of testing strategies—our randomized testing implementation

requires 11 lines of code and our sequential testing imple-

mentation requires 13 lines of code. In contrast, UI Automator

requires 178 lines of code for randomized testing and 199 lines

of code for sequential testing, which are 16x and 15x higher,

respectively. Even worse, it does not have any support for

device management, environment initialization, etc.; it requires

testers to manually set up a testing environment. Table VI

shows this result.

B. Forward Compatibility Testing

To demonstrate that Mimic is useful to test forward com-

patibility, we have downloaded popular 1000 real apps from

Google Play, and chosen 100 apps that target Android API

19. We then run the selected 100 apps across four Android

API versions from 19 (Android 4.4) to 23 (Android 6.0) three

times. We have designated API 19 as the leader, and API 21,

API 22, and API 23 as followers.

We use three methods in our experiment—base-random,

Mimic-random, and Mimic-sequence. The base-random
method does not use Mimic; it implements the randomized

testing strategy described earlier in subsection V-A using UI

Automator. Since it does not use Mimic, randomization is

done on each device independently without using our leader-

follower model. The Mimic-random method uses Mimic and

implements the same randomized testing strategy. However,

since it uses Mimic, all UI actions are synchronized across

different devices. The Mimic-sequence method uses Mimic and

implements the sequential testing strategy described earlier in

subsection V-A. During the experiment, we have captured all

logs that each app generates through our Log Collector. We

have collected 1,200 log files and analyzed the log files.

Table VII shows the summary of errors detected by our

experiment. All the errors reported in this section have caused

the testing apps to crash. 7, 16, and 21 errors from nine apps

are uncovered by the base-random method, the Mimic-random

method, and the Mimic-sequence method, respectively. 9

apps(out of 100 apps) have thrown at least one error.

More specifically, Yelp threw NetworkOnMainThread-
Exception across four Android API versions—Network-
OnMainThreadException is thrown if an app performs a

long task such as a networking operation on its UI thread

(also called the main thread). The cause of the crashes

from IP Webcam and CCleaner is not properly handling

new features such as Runtime Permissions. Three apps,

Home Exercise Workouts, Weather Kitty, and Livestream,

threw NoSuchMethodError at run time since they invoke

methods that newer versions of Android no longer support. For

example, Livestream app has crashed on API 23 because

this app uses Apache HTTPClient, which is deprecated

effective API 23 [4].

We make two observations. First, comparing the base-

random and the Mimic-random methods, we observe that

Mimic’s follow-the-leader model of testing is often more

effective than independent testing. This is because 5 out of

9 apps report more errors when using Mimic and 2 out of 9

apps report the same number of errors. Second, comparing the

Mimic-random and the Mimic-sequence methods, we observe

that the Mimic-sequence method is more effective in all cases.

This is simply because the sequential testing tests every UI

element one at a time, and hence has a better chance of

triggering an error.

C. Backward Compatibility Testing

To show that Mimic is useful for backward compatibility

as well, we have run the same experiment as mentioned in

subsection V-B. Only differences are that we have initialized

the leader to use API 23 (Android 6.0), and followers to use

API 19 (Android 4.4), API 21 (Android 5.0), and API 22

(Android 5.1), and selected 100 apps that target API 23.

Table VIII shows the summary of errors detected by our

experiment. 5, 6, and 13 errors from 6 apps (out of 100 apps)

are found by the base-random method, the Mimic-random

method, and the Mimic-sequence method, respectively. The

apps shown in Table VIII have experienced at least one error.

All of the errors caused the apps to crash, since they are

NullPointerException and NoSuchMethodError.

Once again, NoSuchMethodError has been caused by the

use of deprecated APIs. For example, Map of NYC Subway

app uses getDrawable() which is not available on the

Android platform below API 22. Overall, we can also see

the similar patterns that we have observed for the forward

compatibility experiment.

D. App Version Compatibility Testing

In order to evaluate Mimic’s capability for app version

compatibility testing, we have selected 2,097 apps that are

top 100 apps in each category from Google Play. We have

monitored these apps for two weeks, and chosen 100 out of

233 apps that have at least two different versions. For the

simplicity of presentation, we simply call earlier versions of
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TABLE VII
THE DETAILS OF DETECTED ERRORS FOR FORWARD COMPATIBILITY. * denotes Android API version on the leader.

App Name Android API Version Exception Type
Base-random Mimic-random Mimic-sequence

19* 21 22 23 19* 21 22 23 19* 21 22 23

Yelp � � � � � � � � � NetworkOnMainThreadException

College Sports Live � � � � � � � � NullPointerException

Home Exercise Workouts � � � � � � � NoSuchMethodError

Fast Cleaner � � � � NullPointerException

Photo Lab � � � � � � NullPointerException

Weather Kitty � � � � NoSuchMethodError

IP Webcam � � Mishandling runtime permissions

CCleaner � Mishandling runtime permissions

Livestream � � � NoSuchMethodError

TABLE VIII
THE DETAILS OF DETECTED ERRORS FOR BACKWARD COMPATIBILITY. * denotes Android API version on the leader.

App Name Android API Version Exception Type
Base-random Mimic-random Mimic-sequence

23* 22 21 19 23* 22 21 19 23* 22 21 19

truTV � � � � NullPointerException

Whitetail Deer Calls � � � � � � � NoSuchMethodError

Cheapflights � � � NoSuchMethodError

Map of NYC Subway � � � � � NoSuchMethodError

WatchESPN � � � NullPointerException

Collage Maker � � NoSuchMethodError

TABLE IX
THE DETAILS OF DETECTED ERRORS. Both the stable and new apps are tested on Android 4.4.

App Name Stable Version New Version Exception Type
Base-random Mimic-random Mimic-sequence Base-random Mimic-random Mimic-sequence

TD Jakes Sermons � � � � � � InflateException

Venmo � � � � IllegalArgumentException

Volume Booster � � � � SecurityException

Countdown Timer &
Stopwatch & Caller ID

� � � � NullPointerException

Wonder Buy � NullPointerException

TABLE X
THE DETAILS OF DETECTED ERRORS FROM 10 INSTRUMENTED APPS. Both versions of apps are tested on Android 4.4.

App Name Non-instrumented Version Instrumented Version Exception Type
Mimic-random Mimic-sequence Mimic-random Mimic-sequence

GasBuddy � � � � ClassCastException

Stamp and Draw Paint 2 � � � � ClassCastException

Big 5 Personality Test � � AssertionError

Text To Speech Reader � � AssertionError

Gun Vault � AssertionError

Street Art 3D � � NullPointerException

Viaplay GameCenter-F � � NullPointerException

Q Recharge � � NullPointerException

Funny Face Photo Camera � NullPointerException

Japan Offline Map Hotels Cars � NullPointerException

apps as stable versions, and later versions of apps as new

versions in this experiment. We have run the 100 stable

versions and new versions of apps on the same Android

version, 4.4, in order to show that Mimic is effective in

discovering errors that occur across different versions of apps.

Table IX shows the result. In total, four types of errors

have been found in five apps. For TD Jakes Sermons app, the

error happens during the initialization, thus it is reported in all

testing logic. For Wonder Buy, the error has been found in the

stable version, but not in the newer version, which indicates

that the developer has fixed the bug for the newer version. We

observe that the two methods using Mimic (the Mimic-random

and the Mimic-sequence methods) discover more errors across

different versions than the base-random method.

E. Instrumentation Testing
To demonstrate Mimic’s ability to compare runtime behav-

ior between non-instrumented and instrumented versions, we

have used Reptor [24] and its data set. Reptor is a system we

have developed previously. It is a bytecode instrumentation

tool enabling API virtualization on Android. To demonstrate

the capability of Reptor, it uses 1,200 real apps, instruments

the apps, and verifies the runtime behavior between the origi-

nal and the instrumented version of apps using a randomized

testing strategy. This randomized strategy they use is in fact the

same as the base-random method described in subsection V-B.

For our experiment, we have used the same 1,200 apps

and randomly selected 100 apps of the 1,200, and run the

apps on Android 4.4 two times. We have also used the

result from the Reptor paper for those 100 apps, and use it

as the base-random comparison point in this experiment. In

the first run, we have run the apps with the Mimic-random

method. In the second run, we have used the Mimic-sequence

method. We have also recorded heap allocation sizes using

onHeapUsageChanged() described in Section III in order

to show heap usage comparison between the non-instrumented

and instrumented apps.
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TABLE XI
THE DETAILS OF DETECTED COMPATIBILITY BUGS. The leader (Nexus 5) running on Android 6.0.1. * denotes that the bug are confirmed on multiple

devices. E and U stand for errors and UI distortion respectively.

App Name Category LoC APK Version No. Bug Type Results Device (Android Version)
Open GPS Tracker Travel & Local 12.1K 1.5.0 U � Nexus 5/6.0.1

ConnectBot Communication 17.2K 1.8.6 E � Galaxy Nexus (4.1.1)

AnkiDroid Education 45.2K 2.5alpha48 E � Galaxy S4 (4.4)

c:geo Entertainment 64.8K 2015.11.29 E � Nexus S (2.3.6)

AnySoftKeyboard Tools 23.0K 1.6.134 E � Galaxy S4 (4.4)

QKSMS Communication 56.4K 2.4.1 E � Neuxs 5 (5.1)

BankDroid Finance 22.8K 1.9.10.1 E � Galaxy S4 (4.4)

Evercam Tools 14.8K 1.5.9 E � Nexus S (4.1.2)*

ChatSecure Communication 37.2K 14.0.3 U, E � Galaxy Nexus (4.2.1)

AntennaPod Media & Video 38.9K 1.4.1.4 U � Nexus 5 (5.1)

Brave Android Browser Personalization 20.2K 1.7.4 U � Nexus 5 (4.4)

IrssiNotifier Communication 3.5K 1.7.14 E �
CSipSimple Communication 59.2K 1.02.03 U �
Bitcoin Wallet Finance 17.8K 4.45 E �

TABLE XII
THE DETAILS OF DETECTED PERFORMANCE BUGS. The leader (Nexus 5) running on Android 6.0.1. * denotes that the bug are confirmed on multiple
devices. G, B and M stand for GUI lagging, battery leak, and memory bloat respectively. U stands for unknown due to not enough information given.

App Name Category LoC APK Version No. Bug Type Results Device (Android Version)
Open GPS Tracker Travel & Local 12.1K 1.5.0 G � Galaxy Nexus (4.1.1)

AnkiDroid Education 44.6K 2.1beta6 M � Nexus S (4.0.4)*

AntennaPod Media & Video 38.7K 1.4.0.12 G � Nexus 5 (4.4)*

CSipSimple Communication 59.2K 1.02.03 B � Galaxy S4 (4.4)

Brave Android Browser Personalization 20.2K 1.7.4 G, M � Nexus 5 (4.4)*

K-9 Mail Communication 60.8K 5.106 G � Nexus 5 (5.1)

WordPress Social 73.1K 4.8.1 U �
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Fig. 10. Heap Usage for Four Selected Apps (*Instrumented Apps). The
x-axis shows testing time in seconds.

Table X shows the details of the result. Mimic has caught

10 errors that were not originally reported in the Reptor paper

using their randomized testing strategy (i.e., the base-random

method described in subsection V-B), which can miss some of

the UI paths. Two errors are found in both non-instrumented

and instrumented versions. Eight errors are detected in only

instrumented apps.

Figure 10 shows the heap usage results over testing time.

The results help app developers to understand memory utiliza-

tion of their apps. From the results, we can see that Mimic

effectively verifies the runtime behavior in terms of error

detection and performance comparison.

F. FicFinder Data Set Results

Compatibility Problems: The FicFinder data set [35] con-

sists of 27 large-scale open-source Android apps with various

bugs and problems. Out of the 27 apps, 14 apps are known

to have UI compatibility problems, and we have conducted an

experiment to evaluate whether or not Mimic can flag those

apps as problematic. We have used the randomized testing

strategy and diffUITree() function with 10% threshold.

We have tested each of 14 apps for 5 minutes.

Table XI shows the results. We have detected 8 errors and

4 distorted UI issues from 11 apps. For example, c:geo uses

ShowcaseViewBuilder that does not work on API 14 or

below, and it crashes on Nexus S running API 10. Evercam

also crashes on Nexus S (API 16), Nexus 5 (API 19), etc., due

to a third-party library uses called SplunkMint. The library

has a compatibility problem with Android versions from API

16 to API 19. Four UI distortion issues have structural UI

problems that do not render UIs correctly across different

Android versions. Mimic did not flag three apps (IrssiNotifier,

CSipSimple, and Bitcoin Wallet), since their problems are

specific to particular devices (namely, Blackberry and Zenfone

5). Since we have not tested on those devices, Mimic has not

reported any problem.

Performance Problems: We have also used the FicFinder

data set to test Mimic’s capability to detect performance

problems (i.e., lagging UIs, energy leaks, and memory bloats).

Out of 27 apps, 7 apps are known to have performance

problems, and we have used those apps in our experiment

to see if Mimic flags those apps as problematic. We have

used the randomized testing strategy, and also implemented

onBatteryChanged() and onHeapUsageChanged()
to record battery and heap usage. We report cases where the

difference in battery or heap usage is more than 5%. To detect

battery bloat, we have run this experiment up to 30 minutes.

Table XII shows the results. The results show that Mimic

flags 7 apps out of 8 apps as problematic. Mimic detects four

lagging UI problems, two memory bloat problems, and one

excessive battery drain problem. We consider GUI lagging

if an app has a UI that cannot be loaded within 5 seconds.

From our inspection of AntennaPod code and logs, Anten-

naPod lags whenever it downloads new episodes. AnkiDroid

and Brave Android Browser throw java.lang.OutOf-
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TABLE XIII
COMPARISON TO EXISTING TOOLS. Program., Hetero., and No Instr. stand

for programmability, heterogeneity, and no instrumentation required.

Name Type Program. Hetero. No Instr.
Mimic Black � � �
MonkeyRunner [8] Black �
Caiipa [25] Black �
DroidFuzzer [36] Black �
PUMA [22] Black

RoboTest [10] Black � �
Robotium [11] Black � �
Espresso [5] Grey � �
AndroidRipper [13] Black

A3E [16] Black �
Dynodroid [27] Black �
EvoDroid [28] White �
ConcolicTest [15] Black

VarnaSena [31] Black

MemoryError. CSipSimple causes about 16% battery drain

for 30 minutes on Galaxy S4. We could not find the root cause

of the excessive battery drain, but we realized that CPU user

time of CSipSimple is 965s 13ms from the logs that Mimic

captured. Mimic does not flag WordPress as problematic—

the WordPress issue tracker reports that WordPress (4.8.1

version) has GUI lagging issue. However, there is not enough

information to determine for certain that there is indeed a

performance problem.

VI. DISCUSSION

In this section, we discuss implications of our design

choices as well as potential improvements to Mimic.

Mimic may not be suitable for all types of apps:
Although our evaluation shows that Mimic is effective in

finding potential UI compatibility problems across different

versions and devices, it is not the case that Mimic is suitable

for all types of apps. For example, sensor-centric apps such

as games are not suitable for testing on Mimic since Mimic

does not test sensor input. For future work, we are exploring

how to enable automated testing for sensor-centric apps.

Mimic does not support system events: Some UI actions

can be triggered by system events, for example, a calendar

alarm pop-up can be triggered by a system alarm event. Cur-

rently, Mimic does not support the testing of such UI events.

However, supporting such UI events is potentially possible

by extending our current implementation of Mimic; with the

Android Activity Manager (available via am command), we

can send system events to an app. However, this could lead to

a vast space to explore for testing as Android has a large set

of system events. Intelligently reducing the size of this space

is also our ongoing work.

VII. RELATED WORK

In this section, we compare existing mobile app testing

systems with Mimic on a few important aspects and discuss

how Mimic occupies a unique position in the design space of

mobile app testing. In Table XIII, we compare Mimic to other

systems in four aspects—testing type, programmability, sup-

port for heterogeneity, and whether or not app instrumentation

is required. We discuss each aspect in this section.

Testing Type: There are mainly three types of testing

approaches, depending on the availability of source code. The

first type is black-box testing which does not require any

source code. Fuzz testing [8], [25], [36], [22], [11], [37], [10]

and model-based testing [13], [16], [27], [18], [14], [30], [33]

belong to this category, but they focus on testing a single app.

Mimic also belongs to this category, but its focus is on using

multiple devices and versions and testing UI compatibility.

The other two approaches are white-box testing and grey-box

testing. White-box testing requires full access to source code.

Grey-box testing does not require source code but assumes

some knowledge about apps being tested, e.g., IDs of UI

elements. Typical symbolic execution [29], [34], [21] uses

white-box testing, and there are other systems that take either

a white-box approach [28] or a grey-box approach [5]. Since

white-box and grey-box approaches require knowledge about

apps being tested, they are not suitable for certain scenarios

such as testing instrumented apps.

Programmability: Many existing systems [10], [11], [5]

only allow testers to use predefined methods of input, e.g.,

a monkey-based random input generation method. These sys-

tems do not provide any programmable API.

Support for Heterogeneity: Other systems [8], [25], [36],

[22], [10], [11], [13], [16], [27], [28], [15], [5], [31], [23] do

not provide support for handling multiple devices or versions.

In these systems, testers need to manually set up and configure

their testing environments, if they want to leverage those

systems for UI compatibility testing.

App Instrumentation: A few existing systems [31], [22],

[13], [15] require app instrumentation to enable testing. While

instrumentation allows deep inspection of an app without

requiring its source code, it modifies the app code which might

result in producing different behavior (e.g., heisenbugs).

VIII. CONCLUSIONS

In this paper, we have described a new UI compatibility

testing system for Android apps called Mimic. Mimic sup-

ports follow-the-leader model of parallel testing, where we

designate one device to perform a sequence of UI actions; all

other devices follow this leader and perform the same sequence

of UI actions. This model is useful for UI compatibility

testing across different Android versions, device types, and

app versions. Testing is made easy by Mimic through a concise

programming model for writing tests. The programming model

allows testers to quickly set up testing environments, and to

express their own testing logic. After executing testing logic,

Mimic reports UI compatibility problems such as different

exceptions thrown, different UI paths taken, differences in

resource usage, etc. Our evaluation with a few hundred An-

droid apps downloaded from Google Play shows that Mimic

can effectively detect real errors and report UI compatibility

problems across different Android or app versions.
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