
Lumos: Improving Smart Home IoT Visibility and
Interoperability Through Analyzing Mobile Apps

Jeongmin Kim∗, Steven Y. Ko†, Sooel Son∗ and Dongsu Han∗
KAIST∗, University at Buffalo, The State University of New York, USA†

Abstract—The era of Smart Homes and the Internet of Things
(IoT) calls for integrating diverse “smart” devices, including
sensors, actuators, and home appliances. However, enabling
interoperation across heterogeneous IoT devices is a challenging
task because vendors use their own control and communication
protocols. Prior approaches have attempted to solve this problem
by asking for vendor support, or even fundamentally re-designing
the architecture of IoT devices. These approaches face limitations
as they require disruptive changes.

This paper explores a new approach to improving IoT in-
teroperability without requiring architectural changes or vendor
participation. Focusing on smart-home environments, we propose
Lumos that improves interoperability by leveraging Android apps
that control IoT devices. Lumos uses this information learned
from IoT apps to enable “best-effort” interoperation across
heterogeneous devices. Our evaluation with 15 commercial IoT
devices from three major IoT platforms and in-depth user studies
conducted with 24 participants demonstrate the promising effi-
cacy of Lumos for implementing diverse interoperation scenarios.

I. INTRODUCTION

The smart home market was valued at $76.62 billion in 2018
and is expected to reach $151.38 billion by 2024 [52]. Several
major players (Apple, Amazon, Google, and Samsung) are
consistently introducing new smart appliances and promoting
their own platforms to increase their market share. Along
with their popularity, the demand for their interoperability has
increased [46, 65]. However, it is not trivial to implement a
well-integrated system [3, 18, 21, 37, 44, 60].

The difficulties stem from three limitations: 1) Smart home
devices often have their own means of control, such as mobile
apps, that are proprietary [21, 37]. 2) No single “open” IoT
platform is able to cover all IoT devices—SmartThings and
Wink, the two largest “open” platforms, respectively support
219 and 115 devices (May 2018), while few devices are
supported by both [58, 67]. 3) Interoperation across different
IoT platforms is not a design priority.

Existing approaches to IoT interoperation in the smarthome
context are based on either voluntary vendor participation [1,
24, 31, 40, 43] or architecture generalization [2, 3, 6, 18, 32,
60, 69]. However, these approaches have their own limitations.
The participation-based approaches provide a standardized
common interface (e.g., an open API) with which vendors are
required to conform. However, due to the extra engineering
effort required to support these APIs, these approaches have
not been well received; hence a limited number of devices
are supported. On the other hand, the generalized archi-

tectures propose common data structures and interfaces for
heterogeneous IoT devices. Unfortunately, they have not been
widely deployed because they demand significant changes to
the current IoT architecture and require the agreement of all
stakeholders.

We posit that interoperability will remain a long-lasting
problem in the foreseeable future and seek for an alternative
solution that can be driven by users. Thus, we explore a
different approach, in which we leverage only the informa-
tion already available, enabling interoperation of IoT devices
without explicit vendor support or architectural changes. From
this perspective, the core challenges are to: 1) obtain visibility
and controllability for IoT devices only from the available
information; and 2) improve interoperability among existing
IoT architectures. To this end, we design a new system called
Lumos that empowers users with an automated framework
that supports interoperability. Lumos leverages the key insight
that many IoT devices for smart homes are controlled by
Android apps [26, 27, 53]. The apps are readily available and
already know how to control IoT devices and query device
information.

Leveraging information obtained through app analysis,
Lumos improves the interoperability with minimal user con-
figuration. To infer the semantics and control/status messages
generated by an app, Lumos combines UI, program and
traffic analyses performed on the app binary. It then integrates
the analysis results with finer-grained semantic information
from the user who best knows the context of the action
she triggers when using the app. Based on the information,
Lumos creates an interoperation gateway that understands the
semantics of messages between the app and its IoT device and
actively sends control messages and status queries to the IoT
device. Finally, Lumos helps users easily create interoperation
scenarios of their own by automatically generating scripts. Our
contribution shows that a pure user-driven approach is viable
in bridging the gap until the market fully resolves the problem.

We evaluate Lumos using 15 commercial off-the-shelf
smart-home devices. We show that Lumos can learn the
semantics of IoT operation from network traffic for all device
features (29 out of 29), and is able to generate status and
control messages for most features (26 out of 29, §V-B).
Finally, our user study with 24 participants shows that Lumos
offers a practical programming framework that enables the
interoperation of IoT devices, offers interoperation features
that are not available on commodity IoT platforms, and
requires reasonable configuration effort compared with three978-1-7281-6992-7/20/$31.00 ©2020 IEEE

SmartThings
219 Wink

114

Others

TBD

Count(SmartThings ∩ Wink ∩ Insteon) = 1
Count(SmartThings ∩ Wink) = 25

Insteon
52

Fig. 1: Fragmented smart home ecosystems

popular IoT platform-native apps.
In summary, this paper makes two key contributions:
• Novel approach to interoperability: We present an au-

tomated framework that combines static program analysis
and dynamic learning to understand and re-construct con-
trol messages with user-given semantics.

• System prototype and evaluation: Our in-depth evalua-
tion shows how Lumos enables interoperation between IoT
devices in a unilateral fashion, further enabling new value-
added home IoT services. To the best of our knowledge,
our evaluation covers the largest set of commercial IoT
devices among existing work. Our user study with 24
participants shows the promising efficacy of Lumos and
quantifies the user effort.

II. MOTIVATION

A. The Status Quo of IoT Interoperation

Market reports [29] indicate the existence of 450 IoT
platforms world-wide as of 2017, marking a 25% increase
since 2016 and showing how the IoT ecosystem is becoming
increasingly fragmented. Interoperability is the ability to create
a coherent service by interacting with multiple IoT devices.
Many studies confirm that such fragmentation presents a
significant barrier that impedes interoperability and wider
adoption of home IoT services [19, 28, 30, 44, 68]. We often
come across users experiencing frustrations and ordeals as they
try to make different IoT devices interoperable [51, 54].

Fig. 1 shows three major IoT platforms and the number
of devices they support. We make the following observa-
tions:
• Only devices on the same platform are interoperable.

Cross-platform inter-operation is generally not supported.
Out of the three, only SmartThings exposes external APIs
for controlling and monitoring devices [59].

• If devices belong to a platform, they are locked-in to that
specific platform. They neither support multiple platforms
nor change their platform. We suspect that this limitation
originates from implementation costs and business partner-
ships [57, 61].

• Many IoT devices are still stand-alone and do not inter-
operate with other devices. For example, Chromecast [23]
does not belong to any of the three major platforms and
cannot interact with any devices on these platforms.

wemo
Insight lamp

wired
URL

http://192.168.0.13/upnp/control/basicevent1
Req body (xml - upnp)

<u:Envelope>…
<BinaryState>1</BinaryState>…</u:Evelope>

control msg (turn on plug)

Wemo

SmartThings

cloud

plugSmartThings hub

status msg (use chromecase)

Chromecast

URL: https://customerevents.Netflix.com/users/...
Req body (json)
{EventName: “MDX Target Manager Action”,
data:{languages: …,eventType: “target playback”}}}

URL:
https://api.smartthings.com/elder/.../api/devices/.../mainTile
Res body (json)
"currentState": {…,"name": "motion","value": "inactive"}

status msg (get status of motion sensor)

Device directly

Cloud base

lamp

Netflix

Fig. 2: Connection types of devices and network traffic
Industry efforts: Notable approaches to this problem from
the industry include OpenT2T [43] and IFTTT [24]. OpenT2T
defines common IoT schemas, which consist of properties for
similar devices. For example, a common schema for IoT light
bulbs can define an “on-off” property with two possible values,
“on” and “off”. These schemas are then translated into vendor-
specific implementations. A common schema then provides
a consistent user experience when operating similar devices,
even when they are from different manufacturers or support
different protocols. While the idea of abstraction is noble,
it requires vendor participation to support common schemas.
No tangible incentive for this participation has contributed to
rendering OpenT2T inactive for more than three years at the
time of writing [42].

IFTTT [24] allows users to write Applets that connect
popular web services, apps, and IoT devices. A user can set
up triggers that specify when an Applet should run, filters that
express a desired condition, and actions that are executed when
filter conditions are met. Combined with IoT devices, it can be
used to customize IoT services. However, it leverages existing
open APIs to access device state and issue commands, which
requires vendor supports. Even when vendors expose open
APIs, we find that they expose only a small set of features.

B. Challenges and Key Insight

Approaches that require vendor participation or architectural
change are still far from wide-deployment, despite the growing
needs for interoperability among users. It is necessary to fully
understand IoT devices (e.g., protocol) even when we aim to
improve interoperability without vendor participation. How-
ever, it is difficult to obtain such understandings since almost
all vendors do not open this information (§II-A). Furthermore,
they do not wish to incur the high implementation costs that
design changes entail [50]. The main challenges are to 1)
capture the device state for context monitoring (visibility)
and issue a desired command (controllability) without vendor
support and 2) improve interoperability without requiring
architectural modifications. We take the following usecase
as a concrete running example to illustrate the problem.
Alice has an IoT light bulb and a streaming dongle (e.g.,
Chromecast [23]). Each device has a companion mobile app
that allows Alice to control the device. Now, Alice wants to

UI interaction
Semantic information

P

Interaction replay(x2)

P

Alice

(c) Configuring interoperation rule

(a) Software components

UI information
s

poweron

Click

install
Lumos-app

Smartphone

PC or Router

install
Lumos-gateway

(b) Deployment environment

Lumos-gatewaySmartphone

set
default gateway

Alice Lumos-app
on the top of an IoT app

Lumos-gateway

Chromecast

Chromecast

Learning
Configuration

Cond

Wemo
Insight

Wemo Insight

Ctrl

Cond

Ctrl

Condition: streaming a Netflix movie
Control: turning off a light bulb

UI action

Netflix

Wemo

: Overlay UI for recording

+

Fig. 3: Usage Model - System components, Deployment
environment, and Configuring interoperation rule
configure them together so that the light bulb can automatically
turn itself off when she streams a movie to her TV. A
smarthome system should be aware of whether the streaming
device is currently playing a video and be able to issue the
control command to turn off the light bulb. Once the two
tasks are addressed, implementing an IoT service with multiple
devices amounts to writing a composition rule.
Key insight: Our goal is to enable the two tasks in a user-
driven, best-effort manner with automation support. Our key
insight is that mobile apps play a key role in communicating
with IoT devices and contain valuable information for inter-
operability. 1) They already have the ability to control and
monitor IoT devices. 2) Often vendors themselves provide the
apps and keep them up-to-date. 3) The graphical user interface
(GUI) of the apps provides semantic information (e.g., this
button turns off the light).

Fig. 2 presents an example in which Alice uses a Wemo
Insight Plug to control room lighting. When Alice watches
a Netflix movie using Chromecast, the Netflix app sends an
HTTP request message to the server. This request contains
a message (“eventType”:“target playback”) denoting that the
movie is to be played on the TV connected with Chromecast.
When the request is detected, Lumos triggers a request to
the Wemo Insight Plug to power off. This is feasible because
Lumos learns from IoT apps to recognize the condition and
generate the control message.

III. LUMOS USAGE MODEL

In order to use Lumos, a user installs two software compo-
nents (Fig. 3 (a)). One component is Lumos-app, a mobile app
that allows users to configure interoperation. The other com-
ponent is Lumos-gateway, a middlebox that can be installed
on either a desktop or a router that can run a custom OS
(e.g., a NETGEAR router). Lumos-gateway is a trusted party
that monitors all traffic that IoT apps generate (Fig. 3 (b)). To
monitor the traffic, users need to configure their devices to use
Lumos-gateway as the default gateway. Note, an IoT app may
directly connect to an IoT device (e.g., Wemo Insight Plug)
or go through an IoT hub that talks to IoT devices (Fig. 2).
Lumos-gateway supports both cases.
Configuring interoperation: Our interoperation rule consists
of a condition and a control action. For example, in our

running example with Alice, the condition is streaming a
Netflix movie and the control action is turning off the light.
When Lumos detects the condition, it performs the control
action. To configure a rule, users “teach” Lumos by performing
UI actions that correspond to the condition and the control.
For example, Alice teaches Lumos her condition (streaming
a Netflix movie) by opening her Netflix app and playing a
movie. She also teaches her control (turning off a light bulb)
by opening her Wemo app and turning the light bulb off.

We automate this process by capturing the user interaction
with Lumos-app that runs in the background and displays
an additional UI overlaid on top of an IoT app UI. The
additional UI displayed by Lumos-app guides the user through
the process of configuring a condition action and a control
action. While a user configures a condition action and a control
action, the Lumos-app monitors the UI actions performed by
the user and communicates with Lumos-gateway to capture
the requests and responses caused by these UI actions at
the network level, as illustrated in Fig. 3 (c). Then, Lumos-
gateway analyzes the requests and responses to detect the
condition and trigger control actions. Our implementation
of Lumos-app extends an existing UI record-and-replay tool
called SUGILITE [36], which relies on the Android Accessi-
bility API to monitor, intercept, and inject UI actions.

IV. DESIGN

Achieving our goal requires satisfying three requirements:
1) Lumos-app must provide a way for users to leverage IoT
app UIs to “teach” our system of their intended conditions and
control actions. 2) Lumos-gateway must be able to recognize
pre-configured conditions from the network messages that IoT
apps generate and issue control messages to trigger desired
actions. 3) It must offer programmability using the “learned”
information to configure interoperation rules. Fig. 4 presents
a system overview that delivers the goal. We detail each
component of our design below.

A. Learning from UIs and Users

Lumos starts by learning the semantics of IoT operation
through the UI and user actions on an app. The objective of
this process is to identify the actions of interest that generate
control/status messages and label them with a specific seman-
tic tag. This tag denotes an IoT device operation controlled
via an IoT app UI component, such as turning on/off a bulb.
Lumos takes a user-assisted semantic labeling approach to
reduce human effort. In the ‘teaching’ phase, when a user
clicks a UI component, Lumos assigns the resource ID of the
UI component as the semantic tag because a resource ID is a
human-readable string that usually has semantic information
(e.g. brightness slider). This is done by Lumos-app by moni-
toring user interactions through the Android Accessibility API.
However, the tag might be insufficient. Some resource IDs
do not contain any semantic information (e.g., button1), or a
single button may trigger different actions depending on the
context (e.g., a single switch button for power on and off).

Traffic and Semantics Learning

$4.D Interoperation Support

Network
Signature

UI
Control

Signature-UI pair

Interoperation Support

Lumos-gateway

Interoperation
Builder

Pair DB

Packet
Matcher matched

packet

Sig-UI-Packet Pair

Unchangeable Fields

Packet Learner

DB

HTTP req/res
body comparison Build interoperation rule

Interoperation
Runner

Action

Action

Action

Control

Action

Action

Action

Control

Condition

Condition

Condition

Control

P P P

Packet
Matcher

Packet
Replayer

✓ ✓ ✓

$4.A Learning from UIs and Users
$4.C Network Traffic Learning

UI interaction & Semantics

PP P
Lumos-app

$4.B Learning
from IoT Apps

Sig UI

Fig. 4: Lumos system overview
To manage this, Lumos allows a user to edit semantic tags

displayed during the ‘teaching’ phase to make the meaning
more specific and personalized to the user. For example, when
Alice wants to teach the system how to turn on a WINIX
air cleaner using its app, she demonstrates it by clicking
the power-on button while Lumos-app is running. Lumos-
app then records all of the interactions. When the power-on
button is clicked, Lumos-app shows a dialog with the default
semantic tag (“power on”), which the user can then edit for
customization.
Example: Fig. 5 (left) illustrates the teaching phase in which
a user teaches Lumos-app how to turn on a WINIX air
cleaner with a specific wind force level. ¬ She sets the wind
force options. She then turns on the cleaner. ® Lumos-
app automatically assigns the resource ID (“power on”) to the
power-on button as the semantic tag. Lumos-app records these
interactions for a later step of automatically replaying these
operations (§IV-C) and enables to customize the tag with a
concrete meaning (e.g. power on with wind force level 1).

B. Learning from IoT Apps

By design, Lumos-gateway should trigger a programmed
action upon observing network messages that represent an
IoT operation. This architecture necessitates Lumos-gateway
to identify HTTP(S) requests that an IoT app generates when
clicking a particular UI component. Unfortunately, identifying
such requests is non-trivial without an understanding of the
app logic due to other unrelated requests in the background.

To illustrate this, we quantify the amount of traffic generated
while performing specific actions on the IoT apps listed in
Table I. We capture traffic from each app from the time the
target app is started, perform UI interactions as quickly as
possible, and stop capturing traffic immediately. We report
the average of 10 runs. We perform nine actions using the
apps: 1) lock an August door lock; 2) stream to a Chromecast;
3) turn on a HUE bulb; 4) power on an Insteon plug 5) get
status from Nest Protect; 6) power on a SmartThings plug; 7)
power on a Wemo Insight; 8) play Wink chime; and 9) power
on a Winix air cleaner. On average, each app generates 27.4
HTTP transactions. According to our manual traffic analysis,
all apps in our dataset continuously perform synchronization
as long as the app is in the foreground. We suspect this
is due to the need for minimizing synchronization delays
to enrich user experience. To isolate transactions that a UI

Request (POST)
"controlData": "5", …
"header": { …

"reqTime": "20181112150482630"

Tag: power_on_with_level1
"controlData": "2", ...

"header": {
"reqTime": "changeable"

Request (POST)
"controlData": "2", ..

"header": {
"reqTime": "20181112150826790"

Learning instanceRequests to turn on the cleaner

Tag: power_on_with_level3
"controlData": "5", …
"header": {

"reqTime":"changeable"

Click

Request (POST)
"controlData": "5", …
"header": { …

"reqTime": "20181112150482630"

Request (POST)
"controlData": "2", …

"header": { …
"reqTime": "20181112150842526"

Case1

wind force level-1

Lumos-gatewayLumos-app

② Click
① Select

②

③ same semantic tags
that users can modify later

①

Case2

user
+ Manual interaction

Automatic interaction

Fig. 5: Dynamic learning examples of WINIX app

component generates, Lumos uses static program analysis. It
takes an Android binary (APK) and then pairs a UI component
with the regex signatures of control/status messages that the
UI component generates. In addition, it tracks dependencies
between messages to dynamically learn fields that come from
previous messages.
Building network signatures: To identify the exact control
and status message that a UI component generates or displays
after receiving it, we start from an existing tool, Extracto-
col [33], that conducts a static taint analysis to extract network
message signatures that an Android app generates or receives.
It automatically identifies all app-defined methods that send
network messages, extracts message signatures, and outputs
them in regular expressions. Fig. 6 shows a regular expression
example. Extractocol also provides a call graph of an app as
well as its control-flow and interprocedural data-flow graphs.
We leverage the information in the next phase of our analysis.
UI control identification: Given an app’s call graph and its
network signatures, we associate each message signature with
a UI component that generates a network message matching
the signature. The goal is to precisely identify the network
messages generated by the UI actions of a user when the user
configures conditions and control actions. The Android acces-
sibility API allows the monitoring of which UI components a
user interacts with by providing their resource IDs. If we can
associate a resource ID with a network message signature, we
can isolate the traffic that the UI component generates from
Lumos-gateway, which observes the traffic.

Lumos takes the following two steps to accomplish the
goal. First, it identifies all event listeners that eventually
generate network messages. Since every interactable UI com-
ponent has an event listener, identifying an event listener
is equivalent to identifying a UI component. Lumos does
a backward call graph analysis for this; it starts from each
app-defined method that generates a network message until it
either finds an event listener such as OnClickListener()

and OnSeekBarChangeListener(), or reaches the top of
the call chain. Second, Lumos identifies the resource ID
to which an event listener is attached. Android allows a
developer to register an event listener of a UI component
either dynamically (in the app code) or statically (in the
app’s XML manifest). Statically-registered event listeners are
not difficult to identify since it simply requires parsing of

Action: turn on

URI signature & traffic

http://(.*)/api/(.*)/lights/([0-9])+/state

Req body signature & traffic
{on: (.*), bri: ([0-9]+)}

All OFFid: brightness_slider

Figure 6: Examples of Network signature, UI control,
and string ID for HUE app

son is that it frequently sends HTTP requests for device status
synchronization. According to our manual traffic analysis, all
apps in our dataset continuously perform synchronization as
long as the app is in the foreground. We suspect this is due
to the need for minimizing synchronization delays to enrich
user experiencs.

To isolate transactions a UI component generates, Lumos
uses static program analysis. It takes an Android app binary
(APK) as an input and then pairs a UI component and the
regex signatures of control/status messages that the UI com-
ponent generates. In addition, it tracks dependencies between
messages to dynamically learn fields that come from previous
messages (e.g., authorization tokens). Note, the analysis is
done in offline.
Building network signatures: To identify the exact con-
trol and status message that a UI component generates or
displays after receiving it, we start from an existing tool, Ex-
tractocol [35], that conducts a static taint analysis to extract
network message signatures that an Android app generates or
receives. It automatically identifies all app-defined methods
that send network messages, extracts message signatures, and
outputs them in regular expressions. Fig. 6 shows an example
regular expression. Extractocol also provides a call graph of
an app as well as its control-flow and interprocedural data-
flow graphs. We leverage the information in the next phase
of our analysis.
UI control identification: Given an app’s call graph and its
network signatures, we associate each message signature with
a UI component that generates a network message matching
the signature. The goal is to precisely identify the network
messages generated by the UI actions of a user, when the
user configures conditions and control actions. The Android
accessibility API allows monitoring which UI components a
user interacts with, by providing their resource IDs. If we can
associate a resource ID to a network message signature, we
can isolate the traffic that the UI component generates from
Lumos-gateway that observes traffic.

Lumos takes the following two steps to accomplish the
goal. First, it identifies all developer-implemented event lis-
teners that eventually generate network messages. Since every
interactable UI component has an event listener, identifying
an event listener is equivalent to identifying a UI compo-
nent. Lumos does a backward call graph analysis for this; it
starts from each app-defined method that generates a network
message (given by Extractocol) until it either finds an event
listener such as OnClickListener() and OnSeekBarChange-

class: AbstractBrightnessSeebar implements SeekBar&OnSeekBarChangeListener
public void onProgressChanged(SeekBar arg4, int arg5, boolean arg6) {

this.c = arg6;
this.d.Request_sending_method(((c)this), this.c, arg6, false);

}

Request sending method

Identify findviewbyId(AbstractBrightnessSeebar)

class: BrightnessSeekBarView
public BrightnessSeekBarView(Context arg7, AttributeSet arg8, int arg9) {

…
this.a = this.findViewById(0x7F0D009C);

this.a.setOnSeekBarChangeListener(((SeekBar$OnSeekBarChangeListener)this));
…

}

Backward call-flow traversal to find event listener

a seed of backward taint

• Backward taint analysis
• Semantic analysis

resource id

Figure 7: HUE app UI finding example

Listener(), or reaches the top of the call chain.
Second, Lumos identifies the resource ID to which an event

listener is attached. Android allows a developer to register an
event listener of a UI component either dynamically (in the
app code) or statically (in the app’s XML manifest). Statically-
registered event listeners are not difficult to identify since
it simply requires parsing of the XML manifest. However,
dynamically-registered event listeners are not straightforward
to identify. Thus, Lumos performs further analysis to iden-
tify dynamically-registered event listeners. Lumos starts this
analysis by looking up the call site of every event listener reg-
istration method (e.g., setOnClickListener()). From there,
it finds all objects that invoke the event listener registration
methods. These objects are user-interactable UI objects. Sub-
sequently, Lumos performs backward taint analysis for each
user-interactable UI object until it finds a method that pro-
vides the resource ID for the object, such as findByViewID().
This resource ID is a hexadecimal, and we can find the corre-
sponding string ID in another XML file (public.xml).
Example: Fig. 7 shows how Lumos associates a UI compo-
nent and the control message it generates using the Philips
HUE app. Extractocol outputs a request sending method
which Lumos identifies to be (eventually) by OnSeekBar-

ChangeListener. Therefore, Lumos looks for a setOnSeek-

BarChangeListener call site that registers the event handler.
From the call site, it computes a backward slice that affects
the object (this.a) to which the event handler was attached.
It finally reaches the UI’s resource ID (“0x7F0D009C”),
which is labeled as “brightness_slider” in public.xml.

4.3 Learning from Network Traffic
The UI-signature pairs we extract from an app allows us

to distinguish the traffic triggered by the app’s UI from oth-
ers. However, statically-extracted message signatures do not
provide run-time values, such as URIs, query strings, and
headers. Yet, Lumos should be able to construct a network
request for monitoring and controlling the status of a device.
This means Lumos must know how to fill in actual values.

To address this, Lumos integrates a run-time packet learn-
ing module with information learned from the static analysis.
For this, Lumos-app replays all of the interactions recorded in
the learning phase of §4.1 to generate network traffic. Lumos-
gateway then detects and captures the network messages that

5

Fig. 6: Examples of Network signature, UI control, and
string ID for HUE app

the XML manifest. However, dynamically-registered event
listeners are not straightforward to identify. Thus, Lumos
performs further analysis to identify dynamically-registered
event listeners. Lumos starts this analysis by looking up the
call site of every event listener registration method (e.g.,
setOnClickListener()). From there, it finds all objects
that invoke the event listener registration methods. These
objects are user-interactable UI objects. Subsequently, Lumos
performs backward taint analysis for each user-interactable UI
object until it finds a method that provides the resource ID for
the object, such as findByViewID(). This resource ID is a
hexadecimal, and we can find the corresponding string ID in
another XML file (public.xml).
Example: Fig. 7 shows how Lumos couples a UI compo-
nent and the control message it generates using the HUE
app. Extractocol outputs a request sending method, which
Lumos identifies to be (eventually) by OnSeekBarChange-

Listener. Therefore, Lumos looks for a setOnSeekBar-

ChangeListener call site that registers the event handler.
From the call site, it computes a backward slice that affects
the object (this.a) to which the event handler was attached.
It finally reaches the UI’s resource ID (“0x7F0D009C”), which
is labeled as a “brightness slider” in public.xml.

C. Learning from Network Traffic

The UI-signature pairs we extract from an app allow us
to distinguish the traffic triggered by the app’s UI from other
traffic. However, statically-extracted message signatures do not
provide run-time values, such as URIs, query strings, and
headers. Yet, Lumos should be able to construct a network
request for monitoring and controlling the status of a device.
This means Lumos must know how to fill in actual values.

To address this, Lumos integrates a run-time packet learning
module with information learned from a static analysis. For
this, Lumos-app replays all of the interactions recorded in the
learning phase of §IV-A to generate network traffic. Lumos-
gateway then detects and captures the network messages
that match the network signatures extracted from the phase
in §IV-B. With this task, Lumos-gateway obtains multiple
message instances for each network signature, as shown in
Fig. 5, and uses the values obtained from the observed network
messages. However, some of the attribute values change over
time (e.g., message timestamp), which means that Lumos-
gateway should identify attributes that change across message
instances and should not perform exact matching on those
attribute values when recognizing a pre-configured condition.

Action: turn on
URI signature & traffic

http://(.*)/api/(.*)/lights/([0-9])+/state

Req body signature & traffic
{on: (.*), bri: ([0-9]+)}

All OFFid: brightness_slider

Figure 6: Examples of Network signature, UI control,
and string ID for HUE app

son is that it frequently sends HTTP requests for device status
synchronization. According to our manual traffic analysis, all
apps in our dataset continuously perform synchronization as
long as the app is in the foreground. We suspect this is due
to the need for minimizing synchronization delays to enrich
user experiencs.

To isolate transactions a UI component generates, Lumos
uses static program analysis. It takes an Android app binary
(APK) as an input and then pairs a UI component and the
regex signatures of control/status messages that the UI com-
ponent generates. In addition, it tracks dependencies between
messages to dynamically learn fields that come from previous
messages (e.g., authorization tokens). Note, the analysis is
done in offline.
Building network signatures: To identify the exact con-
trol and status message that a UI component generates or
displays after receiving it, we start from an existing tool, Ex-
tractocol [35], that conducts a static taint analysis to extract
network message signatures that an Android app generates or
receives. It automatically identifies all app-defined methods
that send network messages, extracts message signatures, and
outputs them in regular expressions. Fig. 6 shows an example
regular expression. Extractocol also provides a call graph of
an app as well as its control-flow and interprocedural data-
flow graphs. We leverage the information in the next phase
of our analysis.
UI control identification: Given an app’s call graph and its
network signatures, we associate each message signature with
a UI component that generates a network message matching
the signature. The goal is to precisely identify the network
messages generated by the UI actions of a user, when the
user configures conditions and control actions. The Android
accessibility API allows monitoring which UI components a
user interacts with, by providing their resource IDs. If we can
associate a resource ID to a network message signature, we
can isolate the traffic that the UI component generates from
Lumos-gateway that observes traffic.

Lumos takes the following two steps to accomplish the
goal. First, it identifies all developer-implemented event lis-
teners that eventually generate network messages. Since every
interactable UI component has an event listener, identifying
an event listener is equivalent to identifying a UI compo-
nent. Lumos does a backward call graph analysis for this; it
starts from each app-defined method that generates a network
message (given by Extractocol) until it either finds an event
listener such as OnClickListener() and OnSeekBarChange-

Figure 7: HUE app UI finding example

Listener(), or reaches the top of the call chain.
Second, Lumos identifies the resource ID to which an event

listener is attached. Android allows a developer to register an
event listener of a UI component either dynamically (in the
app code) or statically (in the app’s XML manifest). Statically-
registered event listeners are not difficult to identify since
it simply requires parsing of the XML manifest. However,
dynamically-registered event listeners are not straightforward
to identify. Thus, Lumos performs further analysis to iden-
tify dynamically-registered event listeners. Lumos starts this
analysis by looking up the call site of every event listener reg-
istration method (e.g., setOnClickListener()). From there,
it finds all objects that invoke the event listener registration
methods. These objects are user-interactable UI objects. Sub-
sequently, Lumos performs backward taint analysis for each
user-interactable UI object until it finds a method that pro-
vides the resource ID for the object, such as findByViewID().
This resource ID is a hexadecimal, and we can find the corre-
sponding string ID in another XML file (public.xml).
Example: Fig. 7 shows how Lumos associates a UI compo-
nent and the control message it generates using the Philips
HUE app. Extractocol outputs a request sending method
which Lumos identifies to be (eventually) by OnSeekBar-

ChangeListener. Therefore, Lumos looks for a setOnSeek-

BarChangeListener call site that registers the event handler.
From the call site, it computes a backward slice that affects
the object (this.a) to which the event handler was attached.
It finally reaches the UI’s resource ID (“0x7F0D009C”),
which is labeled as “brightness_slider” in public.xml.

4.3 Learning from Network Traffic
The UI-signature pairs we extract from an app allows us

to distinguish the traffic triggered by the app’s UI from oth-
ers. However, statically-extracted message signatures do not
provide run-time values, such as URIs, query strings, and
headers. Yet, Lumos should be able to construct a network
request for monitoring and controlling the status of a device.
This means Lumos must know how to fill in actual values.

To address this, Lumos integrates a run-time packet learn-
ing module with information learned from the static analysis.
For this, Lumos-app replays all of the interactions recorded in
the learning phase of §4.1 to generate network traffic. Lumos-
gateway then detects and captures the network messages that

5

Figure 6: Examples of Network signature, UI control,
and string ID for HUE app

son is that it frequently sends HTTP requests for device status
synchronization. According to our manual traffic analysis, all
apps in our dataset continuously perform synchronization as
long as the app is in the foreground. We suspect this is due
to the need for minimizing synchronization delays to enrich
user experiencs.

To isolate transactions a UI component generates, Lumos
uses static program analysis. It takes an Android app binary
(APK) as an input and then pairs a UI component and the
regex signatures of control/status messages that the UI com-
ponent generates. In addition, it tracks dependencies between
messages to dynamically learn fields that come from previous
messages (e.g., authorization tokens). Note, the analysis is
done in offline.
Building network signatures: To identify the exact con-
trol and status message that a UI component generates or
displays after receiving it, we start from an existing tool, Ex-
tractocol [35], that conducts a static taint analysis to extract
network message signatures that an Android app generates or
receives. It automatically identifies all app-defined methods
that send network messages, extracts message signatures, and
outputs them in regular expressions. Fig. 6 shows an example
regular expression. Extractocol also provides a call graph of
an app as well as its control-flow and interprocedural data-
flow graphs. We leverage the information in the next phase
of our analysis.
UI control identification: Given an app’s call graph and its
network signatures, we associate each message signature with
a UI component that generates a network message matching
the signature. The goal is to precisely identify the network
messages generated by the UI actions of a user, when the
user configures conditions and control actions. The Android
accessibility API allows monitoring which UI components a
user interacts with, by providing their resource IDs. If we can
associate a resource ID to a network message signature, we
can isolate the traffic that the UI component generates from
Lumos-gateway that observes traffic.

Lumos takes the following two steps to accomplish the
goal. First, it identifies all developer-implemented event lis-
teners that eventually generate network messages. Since every
interactable UI component has an event listener, identifying
an event listener is equivalent to identifying a UI compo-
nent. Lumos does a backward call graph analysis for this; it
starts from each app-defined method that generates a network
message (given by Extractocol) until it either finds an event
listener such as OnClickListener() and OnSeekBarChange-

class: AbstractBrightnessSeebar implements SeekBar&OnSeekBarChangeListener
public void onProgressChanged(SeekBar arg4, int arg5, boolean arg6) {

this.c = arg6;
this.d.Request_sending_method(((c)this), this.c, arg6, false);

}

Request sending method

Identify findviewbyId(AbstractBrightnessSeebar)

class: BrightnessSeekBarView
public BrightnessSeekBarView(Context arg7, AttributeSet arg8, int arg9) {

…
this.a = this.findViewById(0x7F0D009C);

this.a.setOnSeekBarChangeListener(((SeekBar$OnSeekBarChangeListener)this));
…

}

Backward call-flow traversal to find event listener

a seed of backward taint

• Backward taint analysis
• Semantic analysis

resource id

Figure 7: HUE app UI finding example

Listener(), or reaches the top of the call chain.
Second, Lumos identifies the resource ID to which an event

listener is attached. Android allows a developer to register an
event listener of a UI component either dynamically (in the
app code) or statically (in the app’s XML manifest). Statically-
registered event listeners are not difficult to identify since
it simply requires parsing of the XML manifest. However,
dynamically-registered event listeners are not straightforward
to identify. Thus, Lumos performs further analysis to iden-
tify dynamically-registered event listeners. Lumos starts this
analysis by looking up the call site of every event listener reg-
istration method (e.g., setOnClickListener()). From there,
it finds all objects that invoke the event listener registration
methods. These objects are user-interactable UI objects. Sub-
sequently, Lumos performs backward taint analysis for each
user-interactable UI object until it finds a method that pro-
vides the resource ID for the object, such as findByViewID().
This resource ID is a hexadecimal, and we can find the corre-
sponding string ID in another XML file (public.xml).
Example: Fig. 7 shows how Lumos associates a UI compo-
nent and the control message it generates using the Philips
HUE app. Extractocol outputs a request sending method
which Lumos identifies to be (eventually) by OnSeekBar-

ChangeListener. Therefore, Lumos looks for a setOnSeek-

BarChangeListener call site that registers the event handler.
From the call site, it computes a backward slice that affects
the object (this.a) to which the event handler was attached.
It finally reaches the UI’s resource ID (“0x7F0D009C”),
which is labeled as “brightness_slider” in public.xml.

4.3 Learning from Network Traffic
The UI-signature pairs we extract from an app allows us

to distinguish the traffic triggered by the app’s UI from oth-
ers. However, statically-extracted message signatures do not
provide run-time values, such as URIs, query strings, and
headers. Yet, Lumos should be able to construct a network
request for monitoring and controlling the status of a device.
This means Lumos must know how to fill in actual values.

To address this, Lumos integrates a run-time packet learn-
ing module with information learned from the static analysis.
For this, Lumos-app replays all of the interactions recorded in
the learning phase of §4.1 to generate network traffic. Lumos-
gateway then detects and captures the network messages that

5

Fig. 7: HUE app UI finding example
On the other hand, to generate valid control messages, Lumos
must accurately reconstruct them on the fly.

To this end, for each message attribute that changes dynami-
cally, Lumos computes the program slice that is responsible for
generating this attribute from a target IoT app via leveraging
the program analysis module. Lumos computes this slice in
the following steps: 1) The analysis module identifies a seed
statement that inserts the attribute into the message; 2) It
performs a backward taint analysis of computing statements
that have transitive data dependencies on the seed statement.
Automated re-learning: The communication between IoT
devices and apps often uses REST APIs with an authorization
token. Because the communication happens (mostly) over
HTTPS and the device assumes that a token holder is a trusted
party, tokens are often reused. However, a token may be
updated and old ones may become invalidated, in which case
Lumos-gateway has to learn a new token. Lumos uses two
methods to automate this. It learns a new authorization token
by monitoring network traffic and leveraging the dependency
relationship between network messages analyzed by the static
analysis module (as described in §IV-B). For example, when
a user operates a door lock by using the August app, the
app sends a request that includes the token from the previous
response’s header (“x-august-access-token”). If the request
is valid, the server sends a corresponding response with a
new token, which gets reused in subsequent requests. Lumos-
gateway automatically tracks the refresh between the app
and server. In the second method, Lumos actively generates
messages that include a new token by leveraging the app.
In this method, Lumos-gateway sends a push message to
Lumos-app for token re-creation. If Lumos-app receives the
message, it replays a UI interaction recorded from the previous
learning phase which creates a new token. Lumos-gateway
then monitors generated network packets and acquires the
token from the relevant packets. This method is used when
an active monitoring or action fails due to token expiration.

D. Interoperation Support

Our rule builder allows users to configure desired interop-
eration rules that consist of multiple conditions and control
actions, enabling complex interoperation scenarios across het-
erogeneous IoT devices. The interoperation run-time monitors
the conditions. When a condition is satisfied, it performs the
corresponding control action.

Cond
GUI selection

Home

Cond Ctrl

(a) (b)

Fig. 8: Rule specification on Lumos-app
Rule builder: Lumos allows users to compose interoperation
rules with conditions and control actions. We support two
types of conditions: 1) a “passive” condition is detected by
monitoring network traffic without Lumos-gateway sending
any traffic, and 2) an “active” condition involves Lumos-
gateway asking for a device status directly by sending a
learned network message (e.g., motion sensor is active or not).
When an active condition is set, Lumos-gateway periodically
checks the device status without a user’s direct action.

Fig. 8 shows how Alice configures turning off her bulb
in the living room when playing a Netflix movie on a TV
connected to Chromecast. She starts Lumos-app and selects
the configuration menu. The app, then, shows a list including
UI components with semantic tags (e.g., “turn off bulb”).
Alice chooses a desired semantic tag (“request chromecast”)
in the list, and sets the tag as a passive condition as shown
in Fig. 8 (a). As Fig. 8 (b) shows, she then selects the
control to turn the bulb off. This concludes Alice’s config-
uration steps. Lumos-app then registers the rule to Lumos-
gateway. Our demo video shows this scenario with Lumos-
app: https://youtu.be/rdrDUL7-9Zs.
Interoperation run-time: Once a rule is registered, Lumos-
gateway monitors network traffic to check for the condition of
the rule and performs the desired action when the condition
is satisfied. For the condition detection, Lumos-gateway uses
exact matching for the unchangeable fields in the condition’s
HTTP request body. Once the rule is registered, the run-time
checks whether a network message matches the condition of
the rule. When it matches, the run-time generates an HTTP
request that triggers the corresponding action with an up-to-
date authorization token.

E. Practical Issues

Information reuse: The network signature-UI pairing is a
one-time setup procedure. To facilitate the adoption, Lumos
supports the import and export of network signature-UI pairs.
Note this setup file does not contain any credentials (e.g.,
authorization token, ID, and password) because it only con-
tains signature-UI pairs extracted from IoT apps, which are
public information that anyone can extract. After importing
this setup file, users only need to perform UI interactions
for interoperation rule configuration. We implemented this
feature and measured the time to analyze the apps and load the

information. For the nine IoT apps we use in our evaluation,
Lumos took a total of 36.5 minutes for analysis. However,
loading the result took only 0.95 seconds for the nine apps.
This shows the effort of initial learning can be amortized
across users.
Handling SSL traffic: To support Android apps using SSL
for encrypted communications with their server-side services,
Lumos-gateway deploys a local certificate authority (CA)
certificate, which is used prevalently in the industry [20, 47,
48, 62]. Specifically, a user installs a Lumos issued certificate
into an IoT app, which allows Lumos-gateway to inspect
traffics between the app and its server-side service. Lumos-
gateway then re-encrypts the inspected traffics using a session
key derived from the original certificate, thus preventing man-
in-the-middle entities.We applied this interim solution to eight
IoT apps that we evaluated due to their SSL usage.
System overhead: We analyze battery consumption and com-
putation latency in Lumos-gateway. First, an “active” condi-
tion, the interval of which can be configured (2s by default),
periodically checks the device status, which may result in
battery drains. However, queries for active conditions are pro-
cessed by the hub, not the end devices. For example, Wink and
SmartThings hubs cache the latest status of connected devices
[55, 66]. None of the devices in our evaluation set consume
device battery when Lumos-gateway sends active queries. In
our evaluation setup, Lumos-gateway runs on a PC with Intel
i5 and 16 GB memory, and the average packet processing
time (monitoring and sending messages) in Lumos-gateway
is 143ms, which is not huge overhead in terms of usability.
However, it is possible that the latency would increase with
commodity home routers as they have less computing power
than a typical PC. Thus, it requires further engineering effort
to optimize Lumos-gateway’s packet processing for real-world
deployment with commodity routers.

V. EVALUATION

We evaluate Lumos by answering three key questions:
• Does Lumos enable interoperation across diverse IoT

devices and platforms? (RQ1)
• Is Lumos-gateway capable of emulating key functionali-

ties of the IoT apps? (RQ2)
• How easy is it for a user to configure interoperation rules

using Lumos? (RQ3)
We evaluate Lumos using 15 commercial IoT devices and

nine apps that control them, as listed in Table I. To show
the feasibility of Lumos, we use standalone IoT devices and
devices from three popular home IoT platforms. Five devices
are standalone: an August smart lock, Chromecast, a HUE
bulb, Nest Protect, and a Wemo Insight. The rest belongs to
one of the three popular platforms: SmartThings, Wink, and
Insteon.

A. Supporting Diverse IoT Platforms (RQ1)

We first evaluate whether Lumos can emulate the key
functionality of IoT apps to monitor and control the devices.

Devices Supported Platform Lumos

Application Device Type Insteon(3/15) SmartThings(5/15) Wink(6/15) (15/15)

August August smart lock pro Door lock n/a 3 n/a 3

Netflix Chromecast Streaming-dongle n/a n/a n/a 3

Philips HUE HUE Bulb n/a 3 3 3

Insteon
Insteon door sensor Door sensor 3 n/a n/a 3

Insteon plug Smart plug 3 n/a n/a 3
Insteon water leak sensor Water leak sensor 3 n/a n/a 3

Nest Nest Protect CO&smoke detector n/a n/a 3 3

SmartThings
SmartThings plug Smart plug n/a 3 n/a 3

SmartThings motion sensor Motion sensor n/a 3 3 3
SmartThings door sensor Door sensor n/a 3 n/a 3

Wemo Wemo Insight Plug Smart plug n/a n/a n/a 3

Wink
Wink chime Siren&chime n/a n/a 3 3

Wink door sensor Door sensor n/a n/a 3 3
Wink motion sensor Motion sensor n/a n/a 3 3

Winix Winix air cleaner Air cleaner n/a n/a n/a 3

TABLE I: IoT devices, platforms and interoperability (Insteon, SmartThings, Wink and Lumos).

Table I summarizes the coverage of Lumos compared to the
three popular IoT platforms. The “device” column family lists
15 IoT devices and their corresponding mobile apps. Platform-
native apps (shaded) provides programmable features for vari-
ous devices within the platform. In contrast, stand-alone apps
do not provide any interoperation features. The “supported
platform” column shows how many devices the three pop-
ular IoT platforms support. In our evaluation benchmarks,
SmartThings and Wink support only five and six devices,
respectively. Insteon platform devices cannot interoperate with
any of the other two platforms, clearly demonstrating their
mutually exclusive nature. In contrast, Lumos provides much
wider coverage than existing platforms.

B. Emulating IoT App Functionalities (RQ2)

Our next question is whether or not Lumos is able to
emulate key functionalities of the IoT devices for each feature
they support. Table II shows the coverage results compared to
OpenT2T. The “OpenT2T” column shows whether the feature
is supported by OpenT2T, and the “Lumos” column indicates
whether Lumos is able to perform the same operation.

Using real-world IoT devices, we examine whether each in-
dividual control and status messages is recognized and Lumos-
gateway’s control action triggers the correct device behavior.
App features that involve device status queries (shaded in the
table) can be used as a passive condition (‘PC’) and/or an ac-
tive condition (‘AC’) in Lumos (§IV-D). Control functions that
trigger an action on a device can be used as passive conditions
(‘PC’) and/or control actions (‘C’). Note, control actions and
active conditions require Lumos-gateway to generate actual
messages and succeed in achieving the desired outcome. To
support passive conditions (‘PC’), Lumos-gateway must be
able to recognize the network messages.

Lumos supports all 18 status query features as either passive
or active conditions and all 11 control features as either passive
conditions or control actions. In fact, with one exception
(Chromecast), it supports both.

In contrast, seven out of 15 devices (e.g., door locks,
streaming dongles, etc.). do not have an OpenT2T schema.
To enable interoperability using OpenT2T, vendors need to
have a pre-defined schema for a new device. Out of the 29
features that 15 devices support, only 10 are supported by
OpenT2T. Even the devices that are supported by OpenT2T
do not expose all their features (e.g., Nest Protect). This
is because either the schema only defines minimal features
for each device type or the vendor partially implements the
translation from the common schema to its own features. The
large difference between Lumos and OpenT2T (29 versus 10
features supported) shows the benefit of our approach, which
is not tied to any common interface that must be agreed
upon, and does not require vendor support. We observe Lumos
does not support control action for the Netflix-Chromecast
case when the Netflix app goes through a server to talk to
a Chromecast device and their messages do not carry context
information (e.g., what movie is being played). This is the only
case we have observed where the API violates statelessness.
Thus, Lumos does not trigger any action on Chromecast.

C. User study (RQ3)

To answer our usability question, we conducted a user study
in which we asked our participants to configure Lumos with
new interoperations for five given missions.
Participants and environment: Twenty-four participants
were recruited, all of whom were all university students. They
were required to be active smartphone users of age 20 or older.
We asked them to mark their own IoT experience on a three-
point scale: 1) “no experience”; 2) “having experience with at
least one IoT device”; and 3) “having programming experience
on at least one IoT platform”. The groups for each score on the
scale consisted of nine, eight, and seven people, respectively.
The experiment was conducted in a test room with 15 IoT
devices and three IoT platforms, as listed in Table I. We
installed Lumos-gateway which runs on a PC with Intel i5 and

Device App function OpenT2T Lumos # Device App function OpenT2T Lumos

1 August smart lock pro lock/unlock No schema PC, C 9 SmartThings motion sensor active or not 3 PC, AC

get status history PC, AC get status history Not supported PC, AC

2 Chromecast (Netflix) request Chromecast No schema PC 10 SmartThings door sensor open or not No schema PC, AC

get status history PC, AC

3 HUE

turn on/off 3 PC, C

11 Wemo Insight Plug
power on/off 3 PC, Cchange brightness 3 PC, C

change color 3 PC, C get current voltage Not supported PC, AC
get status Not supported PC, AC

4 Insteon door sensor open/close status No schema PC, AC 12 Wink chime play bell No schema PC, C

5 Insteon plug power on/off 3 PC, C 13 Wink door sensor open or not No schema PC, AC

get status history PC, AC

6 Insteon water leak sensor get leak status 3 PC, AC 14 Wink motion sensor active or not 3 PC, AC

get status history Not supported PC, AC

7 Nest Protect
get CO status 3 PC, AC

15 Winix air cleaner
turn on/off

No schema
PC,C

get smoke status Not supported PC, AC change wind force PC, C

get battery health Not supported PC, AC get current status PC, AC

8 SmartThings plug power on/off 3 PC, C –
get status history Not supported PC, AC

TABLE II: Functionality comparison (App/Lumos/OpenT2T schemas). ‘C’ stands for control, ‘PC’ for passive condition,
and ‘AC’ for active condition. Features in grey represent status query functions. The rest are control functions.

Mission # devices ClicksTeach ClicksConf Condition

Tutorial{1,1} 2 5 5 -
Insteon{1,1} 2 6 6 -

Stand-alone{1,2} 3 6 6 -
SmartThings{2,2} 4 9 10 AND

Wink{2,2} 3 10 9 OR

TABLE III: Mission overview: “ClicksTeach” stands for
the minimum number of clicks required for teaching,
“ClicksConf” stands for the minimum number of clicks
required for configuration. “Condition” stands for the
relationship among multiple conditions.

16G RAM. We provided the participants with a smartphone
with the nine apps and Lumos-app.
Missions: We assigned each user five missions that are based
on common interoperation scenarios. To directly compare
Lumos-app with apps provided by the existing IoT platforms
that provide programmable interfaces for automation, we de-
signed three missions to program an interoperation rule using
the existing platforms as well as Lumos. The first mission
was used as a tutorial in which the experimenter showed
a participant how to teach Lumos and how to configure
interoperations with our system. The other missions were
given to the participants in a random order. After the tutorial,
we gave users some time to familiarize themselves with the
apps (August, Netflix, Insteon, SmartThings, Wemo, HUE, and
Wink). During each mission, we did not answer questions on
how to use Lumos-app. The missions are as follows.

Tutorial{1,1}: The mission assumes that a user wants to turn
off a bulb connected to a Wemo Insight when streaming a
Netflix movie through Chromecast. In this mission, we demon-
strate the procedure of configuring interoperation. The partic-
ipants need to teach Lumos-app using Netflix and Wemo apps
and then configure interoperation that is made up of one con-
dition and one control (hence {1, 1}). The standard procedure
for this mission has five clicks for teaching (“ClicksTeach”)

and five clicks for configuration (“ClicksConf”).
Insteon{1,1}: This mission requires participants to configure

interoperation to turn off an Insteon plug when an Insteon
water leak sensor is triggered. This mission is relatively easy
because participants use the Insteon app only to control those
devices. This interoperation consists of one condition and one
control with six “ClicksTeach” and six “ClicksConf”.

Stand-alone{1,2}: This mission requires turning off a Winix
air cleaner and a Wemo Insight when an August door lock
is locking, which consists of one condition and two controls.
Participants need to teach Lumos-app using three IoT apps, as
listed in Table III. The standard procedure for this mission has
eight “ClicksTeach” and six “ClicksConf”. Note only Lumos
supports this scenario unlike other existing IoT platforms.

SmartThings{2,2}: This mission assumes that a user turns
off a SmartThings plug and a HUE bulb connected to a
SmartThings hub if a SmartThings motion sensor does not
detect any motion and a door sensor is closed. Thus, the inter-
operation for this mission consists of two conditions connected
by “AND” and two controls. To configure the interoperation,
participants teach Lumos-app by using the SmartThings app
to control four devices (motion sensor, door sensor, plug, and
bulb). The standard procedure has nine “ClicksTeach” and
eight “ClicksConf”. Besides, participants need to select the
condition (“AND”).

Wink{2,2}: This mission requires participants to configure
interoperation to play a Wink siren when a Wink door sensor
is opened, or a Wink motion sensor detects motion. Therefore,
the interoperation consists of two conditions by connecting
“OR” and one control, which requires 12 “ClicksTeach” and
nine “ClicksConf”. Like SmartThings{2,2}, participants need
to choose an appropriate condition (“OR”).
Procedure: The experiment took about one hour per par-
ticipant. After signing the IRB-approved consent form, each
participant performed a full rehearsal of the tutorial with the

41
.0

68
.8

84
.1

39
.0

44
.0

61
.6

26
.6

51
.8

Te
ac
h

Co
nf

In
st
eo

n

Te
ac
h

Co
nf

Sm
ar
tT
hi
ng
s

Te
ac
h

Co
nf

W
in
k

0

20

40

60

80

100

Phases	for	each	mission

av
g.
	T
im

e	
(s
ec
)

SmartThings
{2,2}

Insteon
{1,1}

Wink
{2,2}

11
.7

(a) The avg. completion time

8.
0

7.
0

10
.0

12
.0

12
.0

15
.0

14
.0

10
.0

24
.0

Te
ac
h

Co
nf

In
st
eo

n

Te
ac
h

Co
nf

Sm
ar
tT
hi
ng
s

Te
ac
h

Co
nf

W
in
k

0

10

20

30

Phases	for	each	mission

av
g.
	C
lic
ks
	(#
)

SmartThings
{2,2}

Insteon
{1,1}

Wink
{2,2}

(b) The avg. completion click

Fig. 9: The comparison of three platform-native apps and
lumos-app

48.8 45.7 85.7 72.7 128.3 102.3 106.8 82.8

First Last First Last First Last First Last
0

50

100

150

Par.cipants	groups	by		the	order	of	performed	mission

av
g.
	c
om

pl
e.

on
	.
m
e	
(s
ec
)

Stand-alone
{1,2}

SmartThings
{2,2}

Insteon
{1,1}

Wink
{2,2}

Fig. 10: The average completion time (sec) grouped by
the order of start mission. “First” stands for a group that
conducted a specific mission first. “Last” stands for a group
that performed a specific mission last.
experimenter. They also learned how to configure automation
with three platform-native apps during that time. Following
the tutorial, the experimenter gave four missions in random
order. For a given mission, a participant first performed it using
Lumos-app. For the three missions with existing IoT-platform
support (Insteon{1,1},SmartThings{2,2}, and Wink{2,2}), the
participants performed them again using the platform-native
apps. Note that, there are some nuanced differences in usability
across platforms, which we will discuss later in the section.

For each mission, we measured the number of clicks and
time required for mission completion for the teaching step
and the configuration step separately. In the teaching step,
Lumos-app automatically records the count of click operations
from the “start recording” click to the “end recording” click.
Likewise, in the configuration step, Lumos-app records the
count from the “interoperation manager” click to the “finish
configuration” click.
Mission results: Overall, 23 out of the 24 (95.8%) par-
ticipants succeeded in all four missions and one succeeded
in three missions. The participant who failed a mission did
not complete SmartThings{2,2} because the participant prema-
turely clicked “configuration finish” button from confirmation
dialog before completing configuration; the participant was
supposed to select the next condition and the ‘AND’ operator
to combine the two conditions. Fig. 9 compares Lumos-app
and three platform-native apps, in terms of mission completion
times and clicks.
How does Lumos-app compare to platform-native apps

in terms of time and effort to configure interoperation?
To demonstrate that Lumos-app has reasonable entry barri-
ers, we compared platform-native apps and Lumos-app for
Insteon{1,1}, SmartThings{2,2}, and Wink{2,2} (Fig. 9). In
general, using Lumos-app for all missions except Insteon{1,1}
took more time, and an equal or more number of clicks
compared to existing platform-native apps. This is because
unlike platform-native apps, Lumos involves teaching which
takes most of the user time. When looking at time and
clicks for configuration alone excluding teaching, Lumos-app
is considerably faster. We note that the teaching results are
reusable. If Lumos-app has already finished learning a specific
IoT device’s action, users just need to decide whether it is a
condition or a control in the configuration phase. The teaching
phase can even be omitted using information sharing and
automated re-learning, thereby reducing the time and effort
considerably (§IV-E).

How does Lumos-app compare to platform-native apps in
terms of usability? We found nuanced differences in the
programmability of the three IoT platforms. Unlike Lumos,
the platform-native apps do not easily support relationships
to connect thenmultiple conditions that are required by our
missions, Wink{2,2} and SmartThings{2,2}. SmartThings sup-
ports this only through the script-based programming API
to complement their usability [56]. Wink and Insteon do
not provide ways to combine multiple conditions. To work
around this, we prepared a SmartThings app script (about
80 lines) in advance for SmartThings{2,2} and uploaded it
to the SmartThings marketplace from which the participants
downloaded and chose a proper device required by the script.

For Wink{2,2} that uses two conditions connected by
the “OR” condition, participants had to resort to breaking
down the rule into two separate rules. This is the reason
Wink{2,2} required more clicks than other missions. Finally,
the Insteon{1,1} mission required the most time when using
the Insteon platform app (Fig. 9(a)). This is because Insteon
takes some time (about 30s) to apply automation rules to the
desired devices [25] For this, six participants left negative
feedback that the process was boring and inefficient.

Unlike Insteon, Lumos instantly configures the rules without
any noticeable inefficiency. Although we concede that the
usability of platform-native apps can improve, our comparison
to the current status quo shows that Lumos offers a more
efficient programming environment and comparable levels of
effort and difficulty as platform-native apps.

Learning curve for users. We look at whether the time to
complete missions decreased as users gained more experience.
Recall that we assigned the missions to each participant in
a random order, making the order of missions differ from
one participant to another. Fig. 10 shows the average time
required to complete each mission by two groups: partici-
pants who carried out the mission as the first mission and
participants who carried out the mission as the last mission.
Firsti denotes the average time of those who started with
mission i, and Lasti indicates the average time of those who

performed mission i as their last mission. Interestingly, for
each mission i, the average time of Lasti is smaller than
Firsti, which means that participants tend to obtain a better
understanding with the last mission. Notably, the difference
in average time between Firsti and Lasti is more noticeable
for more complex missions (Wink{2,2} and SmartThings{2,2})
that involved more conditions than the other missions. This
shows participants quickly gained familiarity with Lumos.

VI. RELATED WORK

IoT architectures for device interoperability: Many studies
[2, 3, 4, 6, 8, 13, 18, 22, 45] present middleware-based ap-
proaches to improve interoperation among heterogeneous IoT
devices. Some of the approaches [2, 3] leverage a smartphone
as a mobile gateway and build middleware on top of the
gateway. They offer REST APIs that write and load data
from heterogeneous IoT devices. However, all approaches
in this category necessarily require additional engineering
effort from vendors. In contrast, Lumos focuses on supporting
interoperation with no vendor support.
Program analysis: We build on the prior work that uses static
analysis for network protocols [5, 9, 10, 11, 12, 15, 16, 17, 33,
41, 49, 63, 64]. These approaches analyze and detect network
signatures, protocol state machines, etc. Dispatcher [9] reverse
engineers a botnet’s command-and-control (C&C) protocol.
Replayer [49] and Rosetta [10] focus on re-playing application
dialogues, while others [12, 15, 17, 41] aim to identify protocol
fields within a message. In particular, like Lumos, Reformat
[64], Extractocol [33], and ProDecoder [63] extract network
message formats by inspecting application binaries. However,
the main difference is that Lumos does not simply analyze
network protocols but identifies the relationships between UI
components and network behavior.
Programming by Demonstration (PBD): Programming by
demonstration (PBD) is a useful technique to allow end users
to automate their UI actions without requiring any program-
ming [14, 34, 36, 37, 38, 39]. EPIDOSITE [37] focuses on
mitigating interoperability problem of IoT devices by using
the Android Accessibility API. The limitation of using the
accessibility API is that an IoT app must be in the foreground
whenever EPIDOSITE needs to detect a condition or issue a
control action. In contrast, Lumos avoids this limitation as we
focus on monitoring and emulating network level interactions
between IoT apps and devices.

VII. LIMITATIONS

Legality and user privacy: As discussed throughout the
paper, Lumos analyzes smart-home apps and control devices.
Thus, if the license terms of a smart home app or device
expressly prohibits any of the required levels of access by
Lumos (e.g., if license terms prohibit device control by third-
party software), Lumos cannot be used. Note that Lumos is
designed to avoid extracting private information from apps.
However, Lumos’s control messages may contain private infor-
mation when sending them for interoperation. We can extend

Lumos to provide message inspection functionality for tech-
savvy users to check their apps’ messages for privacy.
Generality: Lumos has two limitations with regard to sup-
porting various mobile apps. 1) Lumos-app cannot record
actions for web-based apps due to the limitation of the Android
accessibility mechanism. Incorporating HTML DOM access-
ing tools [7, 35] helps support such web-based apps. 2) Lumos
cannot enable interoperation with non-Android devices as it
analyzes Android apps only. This limitation can be remedied
by a user who can manually inspect the network traffic of
these devices.
User study: Note that our user study participants are uni-
versity students, and this does not represent the general user
demographic. However, the experimental results indicate a
promising possibility of the adoption of Lumos by the general
public. We believe that the richer and more interactive UI
of Lumos will help increase usability, thus facilitating further
adoption of Lumos.
Beyond message replay: Currently, Lumos replays previous
messages (apart from updating them with the latest token).
In our evaluation, we show that this technique alone enables
the programming of many practical use cases. However, this
simple message replay can be improved with fine-grained
semantic information, such as the semantic meanings of indi-
vidual fields, which would bring greater flexibility to devising
diverse scenarios. (e.g., waiting for three mins after the door
is locked before turning off the fan).

VIII. CONCLUSION

Despite the development of large IoT platforms and industry
efforts for interoperability, we observe that the ecosystem is
still largely fragmented. We posit that efforts that rely on
vendor support or architectural changes face a fundamental
challenge in deployment. To overcome the problem, Lumos
takes a best-effort approach that leverages information embed-
ded in IoT apps and combines it with semantic information
from users. Our evaluation across 15 IoT devices from pop-
ular vendors demonstrates the feasibility of the approach. In
particular, our user study with 24 participants demonstrates
that Lumos-app offers a usable programming tool that en-
ables the interoperation of IoT devices, offers interoperation
features that are not available on commodity IoT platforms,
and requires reasonable effort compared to three popular IoT
platform-native apps.

IX. ACKNOWLEDGEMENT

We thank our shepherd, Ralph Holz, for helpful comments.
This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
funded by the Korea government (No. 2020-0-00191, Re-
search and Development of Modularized Library and Engine
for Blockchain Emulation and Testing), (No. 2015-0-00164,
Creation of PEP based on automatic protocol behavior analysis
and Resource management for hyper connected for IoT Ser-
vices); and the National Research Foundation of Korea (NRF)
funded by the Korea government [NRF-2017H1A2A1042363].

REFERENCES

[1] AllJoyn. an open source software framework that makes
it easy for devices and apps to discover and communicate
with each other. https://openconnectivity.org/developer/
reference-implementation/alljoyn, 2019.

[2] G. Aloi, G. Caliciuri, G. Fortino, R. Gravina, P. Pace,
W. Russo, and C. Savaglio. A mobile multi-technology
gateway to enable IoT interoperability. In IEEE First In-
ternational Conference on Internet-of-Things Design and
Implementation (IoTDI), pages 259–264. IEEE, 2016.

[3] G. Aloi, G. Caliciuri, G. Fortino, R. Gravina, P. Pace,
W. Russo, and C. Savaglio. Enabling IoT interoperabil-
ity through opportunistic smartphone-based mobile gate-
ways. Journal of Network and Computer Applications,
81:74–84, 2017.

[4] A. Badii, J. Khan, M. Crouch, and S. Zickau. Hydra:
Networked embedded system middleware for heteroge-
neous physical devices in a distributed architecture. In
Final External Developers Workshops Teaching Materi-
als, page 4, 2010.

[5] I. Bermudez, A. Tongaonkar, M. Iliofotou, M. Mellia,
and M. M. Munafò. Towards automatic protocol field
inference. Computer Communications, 84:40–51, 2016.

[6] M. Blackstock and R. Lea. IoT Interoperability: A Hub-
based Approach. In International Conference on the
Internet of Things (IoT), pages 79–84. IEEE, 2014.

[7] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller.
Automation and customization of rendered web pages. In
Proceedings of the 18th annual ACM symposium on User
interface software and technology, pages 163–172, 2005.

[8] A. Bröring, S. Schmid, C.-K. Schindhelm, A. Khelil,
S. Kabisch, D. Kramer, D. Le Phuoc, J. Mitic, D. Anicic,
and E. Teniente López. Enabling IoT Ecosystems through
Platform Interoperability. IEEE software, 34(1):54–61,
2017.

[9] J. Caballero, P. Poosankam, C. Kreibich, and D. Song.
Dispatcher: Enabling Active Botnet Infiltration usingAu-
tomatic Protocol Reverse-Engineering. In Proceedings of
the 16th ACM conference on Computer and communica-
tions security, pages 621–634. ACM, 2009.

[10] J. Caballero and D. Song. Rosetta: Extracting protocol
semantics using binary analysis with applications to
protocol replay and natrewriting. CyLab, page 32, 2007.

[11] J. Caballero and D. Song. Automatic Protocol Reverse-
Engineering: Message Format Extraction and Field Se-
mantics Inference. Computer Networks, 57(2):451–474,
2013.

[12] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot:
Automatic extraction of protocol message format using
dynamic binary analysis. In Proceedings of the 14th ACM
conference on Computer and communications security,
pages 317–329, 2007.

[13] M. Caporuscio, P.-G. Raverdy, and V. Issarny. ubiSOAP:
A Service-Oriented Middleware for Ubiquitous Network-
ing. IEEE Transactions on Services Computing, 5(1):86–

98, 2012.
[14] J.-H. Chen and D. S. Weld. Recovering from Errors

during Programming by Demonstration. In Proceedings
of the 13th international conference on Intelligent user
interfaces, pages 159–168. ACM, 2008.

[15] P. M. Comparetti, G. Wondracek, C. Kruegel, and
E. Kirda. Prospex: Protocol Specification Extraction. In
Security and Privacy, IEEE Symposium on, pages 110–
125. IEEE, 2009.

[16] W. Cui, V. Paxson, N. Weaver, and R. H. Katz. Protocol-
Independent Adaptive Replay of Application Dialog.
In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2006.

[17] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-
Briz. Tupni: Automatic reverse engineering of input
formats. In Proceedings of the 15th ACM conference on
Computer and communications security, pages 391–402,
2008.

[18] P. Desai, A. Sheth, and P. Anantharam. Semantic Gate-
way as a Service Architecture for IoT Interoperability.
In IEEE International Conference on Mobile Services,
pages 313–319. IEEE, 2015.

[19] M. Dı́az, C. Martı́n, and B. Rubio. State-of-the-art,
challenges, and open issues in the integration of Internet
of things and cloud computing. Journal of Network and
Computer applications, 67:99–117, 2016.

[20] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sul-
livan, E. Bursztein, M. Bailey, J. A. Halderman, and
V. Paxson. The Security Impact of HTTPS Interception.
In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2017.

[21] M. Elkhodr, S. Shahrestani, and H. Cheung. The Internet
of Things: New Interoperability, Management and Secu-
rity Challenges. arXiv preprint arXiv:1604.04824, 2016.

[22] K. Gama, L. Touseau, and D. Donsez. Combining
heterogeneous service technologies for building an Inter-
net of Things middleware. Computer Communications,
35(4):405–417, 2012.

[23] Google. Chromecast is a line of digital media players
developed by Google. https://store.google.com/product/
chromecast, 2019.

[24] IFTTT. The free way to get all your apps and devices
talking to each other. https://ifttt.com/, 2019.

[25] Insteon. Creating a Scene with the Insteon Hub
(Android). https://www.insteon.com/support-
knowledgebase/2015/7/7/creating-a-scene-with-the-
insteon-hub-android, 2019.

[26] M. Intelligence. Smart Homes Market -
Growth, Trends, and Forecast (2019 - 2024).
https://www.mordorintelligence.com/industry-reports/
global-smart-homes-market-industry, 2018.

[27] IoT Agenda. A smart home app is an application used to
remotely control and manage connected non-computing
devices in the home, typically from a smartphone
or tablet. https://internetofthingsagenda.techtarget.com/
definition/smart-home-app-home-automation-app, 2015.

https://openconnectivity.org/developer/reference-implementation/alljoyn
https://openconnectivity.org/developer/reference-implementation/alljoyn
https://store.google.com/product/chromecast
https://store.google.com/product/chromecast
https://ifttt.com/
https://www.insteon.com/support-knowledgebase/2015/7/7/creating-a-scene-with-the-insteon-hub-android
https://www.insteon.com/support-knowledgebase/2015/7/7/creating-a-scene-with-the-insteon-hub-android
https://www.insteon.com/support-knowledgebase/2015/7/7/creating-a-scene-with-the-insteon-hub-android
https://www.mordorintelligence.com/industry-reports/global-smart-homes-market-industry
https://www.mordorintelligence.com/industry-reports/global-smart-homes-market-industry
https://internetofthingsagenda.techtarget.com/definition/smart-home-app-home-automation-app
https://internetofthingsagenda.techtarget.com/definition/smart-home-app-home-automation-app

[28] IoT Agenda. Why interoperability holds
the keys to the smart home. https:
//internetofthingsagenda.techtarget.com/blog/IoT-
Agenda/Why-interoperability-holds-the-keys-to-the-
smart-home, 2016.

[29] IoT analytics. Iot platforms company list 2017.
https://iot-analytics.com/iot-platforms-company-list-
2017-update/, 2017.

[30] IoT for all. Smart Home Interoperability: The
Key Hurdles. https://www.iotforall.com/smart-home-
interoperability-key-hurdles/, 2019.

[31] IoTivity. An open source software framework enabling
seamless device-to-device connectivity to address the
emerging needs of the Internet of Things. https://
iotivity.org/, 2019.

[32] J. Kiljander, A. D’elia, F. Morandi, P. Hyttinen, J. Takalo-
Mattila, A. Ylisaukko-Oja, J.-P. Soininen, and T. S.
Cinotti. Semantic interoperability architecture for per-
vasive computing and internet of things. IEEE access,
2:856–873, 2014.

[33] J. Kim, H. Choi, H. Namkung, W. Choi, B. Choi,
H. Hong, Y. Kim, J. Lee, and D. Han. Enabling
Automatic Protocol Behavior Analysis for Android Ap-
plications. In Proceedings of the 12th International on
Conference on emerging Networking EXperiments and
Technologies, pages 281–295. ACM, 2016.

[34] T. A. Lau and D. S. Weld. Programming by Demonstra-
tion:An Inductive Learning Formulation. In Proceedings
of the 4th international conference on Intelligent user
interfaces, pages 145–152. ACM, 1998.

[35] G. Leshed, E. M. Haber, T. Matthews, and T. Lau.
Coscripter: automating & sharing how-to knowledge in
the enterprise. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 1719–
1728, 2008.

[36] T. J.-J. Li, A. Azaria, and B. A. Myers. SUGILITE: Cre-
ating Multimodal Smartphone Automation by Demon-
stration. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems, pages 6038–6049.
ACM, 2017.

[37] T. J.-J. Li, Y. Li, F. Chen, and B. A. Myers. Programming
IoT Devices by Demonstration Using Mobile Apps. In
International Symposium on End User Development,
pages 3–17. Springer, 2017.

[38] T. J.-J. Li and O. Riva. Kite: Building Conversational
Bots from Mobile Apps. In Proceedings of the 16th
Annual International Conference on Mobile Systems,
Applications, and Services, pages 96–109. ACM, 2018.

[39] H. Lieberman. Your Wish is My Command: Programming
By Example. Morgan Kaufmann, 2001.

[40] Lifewire. What Is Google Brillo and Weave? https://
www.lifewire.com/what-is-brillo-weave-1616282, 2019.

[41] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic
protocol format reverse engineering through context-
aware monitored execution. In NDSS, volume 8, pages
1–15, 2008.

[42] Microsoft. OpenT2T github. https://github.com/
openT2T/translators, 2015.

[43] Microsoft. OpenT2T - An Open Source project to trans-
late common IoT schemas to specific hardware devices.
https://www.opentranslatorstothings.org/, 2019.

[44] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma. A
gap analysis of Internet-of-Things platforms. Computer
Communications, 89:5–16, 2016.

[45] J. Mineraud and S. Tarkoma. Toward interoperability for
the Internet of Things with meta-hubs. arXiv preprint
arXiv:1511.08063, 2015.

[46] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlam-
tac. Internet of things: Vision, applications and research
challenges. Ad hoc networks, 10(7):1497–1516, 2012.

[47] D. Naylor, R. Li, C. Gkantsidis, T. Karagiannis, and
P. Steenkiste. And Then There Were More: Secure
Communication for More Than Two Parties. In Proceed-
ings of the 13th International Conference on emerging
Networking EXperiments and Technologies, pages 88–
100. ACM, 2017.

[48] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis,
J. Blackburn, D. R. López, K. Papagiannaki, P. Ro-
driguez Rodriguez, and P. Steenkiste. Multi-context TLS
(mcTLS): Enabling secure in-network functionality in
TLS. In ACM SIGCOMM Computer Communication
Review, volume 45, pages 199–212. ACM, 2015.

[49] J. Newsome, D. Brumley, J. Franklin, and D. Song.
Replayer: Automatic protocol replay by binary analysis.
In Proceedings of the 13th ACM conference on Computer
and communications security, pages 311–321, 2006.

[50] M. Noura, M. Atiquzzaman, and M. Gaedke. Interoper-
ability in internet of things: Taxonomies and open chal-
lenges. Mobile Networks and Applications, 24(3):796–
809, 2019.

[51] Reddit. Homeautomation forum. https:
//www.reddit.com/r/HomeAutomation, 2019.

[52] ResearchAndMarkets.com. Smart Home Market by Prod-
uct, Software & Services, and Region - Global Forecast
to 2024. https://www.researchandmarkets.com/research/
r4xlbj/smart-home-market, 2019.

[53] Sam Solutions. A Mobile App for a Smart
Home Solution: Takeaways and Guidelines.
https://www.sam-solutions.com/blog/why-is-a-mobile-
app-important-for-an-efficient-smart-home-solution/,
2019.

[54] Samsung. SmartThings devices-integrations forum. https:
//community.smartthings.com/c/devices-integrations,
2019.

[55] SmartThings. SmartThings hub stores the latest value
locally. https://community.smartthings.com/t/does-
device-latestvalue-query-the-device-or-just-the-hub-
battery-usage-concerns/61228, 2016.

[56] SmartThings. Developer Documentation. =
https://smartthings.developer.samsung.com/docs/index.html,
2019.

[57] SmartThings. Publish your devices to Smart-

https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Why-interoperability-holds-the-keys-to-the-smart-home
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Why-interoperability-holds-the-keys-to-the-smart-home
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Why-interoperability-holds-the-keys-to-the-smart-home
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Why-interoperability-holds-the-keys-to-the-smart-home
https://iot-analytics.com/iot-platforms-company-list-2017-update/
https://iot-analytics.com/iot-platforms-company-list-2017-update/
https://www.iotforall.com/smart-home-interoperability-key-hurdles/
https://www.iotforall.com/smart-home-interoperability-key-hurdles/
https://iotivity.org/
https://iotivity.org/
https://www.lifewire.com/what-is-brillo-weave-1616282
https://www.lifewire.com/what-is-brillo-weave-1616282
https://github.com/openT2T/translators
https://github.com/openT2T/translators
https://www.opentranslatorstothings.org/
https://www.reddit.com/r/HomeAutomation
https://www.reddit.com/r/HomeAutomation
https://www.researchandmarkets.com/research/r4xlbj/smart-home-market
https://www.researchandmarkets.com/research/r4xlbj/smart-home-market
https://www.sam-solutions.com/blog/why-is-a-mobile-app-important-for-an-efficient-smart-home-solution/
https://www.sam-solutions.com/blog/why-is-a-mobile-app-important-for-an-efficient-smart-home-solution/
https://community.smartthings.com/c/devices-integrations
https://community.smartthings.com/c/devices-integrations
https://community.smartthings.com/t/does-device-latestvalue-query-the-device-or-just-the-hub-battery-usage-concerns/61228
https://community.smartthings.com/t/does-device-latestvalue-query-the-device-or-just-the-hub-battery-usage-concerns/61228
https://community.smartthings.com/t/does-device-latestvalue-query-the-device-or-just-the-hub-battery-usage-concerns/61228
=

Things. https://smartthings.developer.samsung.com/
distribution, 2019.

[58] SmartThings. Support Products. https:
//www.smartthings.com/products, 2019.

[59] SmartThings. Web Service. https://
docs.smartthings.com/en/latest/smartapp-web-services-
developers-guide/overview.html, 2019.

[60] Z. Song, A. A. Cárdenas, and R. Masuoka. Semantic
middleware for the internet of things. In Internet of
Things (IoT), pages 1–8. IEEE, 2010.

[61] TechTarget. The IoT journey for manu-
facturers: concept, production and beyond.
https://internetofthingsagenda.techtarget.com/blog/IoT-
Agenda/The-IoT-journey-for-manufacturers-Concept-
production-and-beyond, 2017.

[62] TLSeminar. TLS Interception and SSL Inspection. https:
//tlseminar.github.io/tls-interception/, 2017.

[63] Y. Wang, X. Yun, M. Z. Shafiq, L. Wang, A. X. Liu,
Z. Zhang, D. Yao, Y. Zhang, and L. Guo. A Semantics
Aware Approach toAutomated Reverse Engineering Un-
known Protocols. In IEEE International Conference on
Network Protocols (ICNP), pages 1–10. IEEE, 2012.

[64] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace.
ReFormat: Automatic Reverse Engineering ofEncrypted
Messages. In European Symposium on Research in
Computer Security, pages 200–215. Springer, 2009.

[65] A. Whitmore, A. Agarwal, and L. Da Xu. The Internet
of Things - A survey of topics and trends. Information
Systems Frontiers, 17(2):261–274, 2015.

[66] Wink Labs. Wink Door/Window sensor manual. http://
manuals-backend.z-wave.info/make.php?lang=en&sku=
Wink%20D/W%20Sensor&cert=ZC10-17075685, 2019.

[67] Wink Labs. Wink support products. https://
www.wink.com/help/products, 2019.

[68] C. Yang, B. Yuan, Y. Tian, Z. Feng, and W. Mao.
A Smart Home Architecture Based on Resource Name
Service. In 2014 IEEE 17th International Conference
on Computational Science and Engineering, pages 1915–
1920. IEEE, 2014.

[69] T. Zachariah, N. Klugman, B. Campbell, J. Adkins,
N. Jackson, and P. Dutta. The Internet of Things
Has a Gateway Problem. In Proceedings of the 16th
international workshop on mobile computing systems and
applications, pages 27–32. ACM, 2015.

https://smartthings.developer.samsung.com/distribution
https://smartthings.developer.samsung.com/distribution
https://www.smartthings.com/products
https://www.smartthings.com/products
https://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/overview.html
https://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/overview.html
https://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/overview.html
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/The-IoT-journey-for-manufacturers-Concept-production-and-beyond
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/The-IoT-journey-for-manufacturers-Concept-production-and-beyond
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/The-IoT-journey-for-manufacturers-Concept-production-and-beyond
https://tlseminar.github.io/tls-interception/
https://tlseminar.github.io/tls-interception/
http://manuals-backend.z-wave.info/make.php?lang=en&sku=Wink%20D/W%20Sensor&cert=ZC10-17075685
http://manuals-backend.z-wave.info/make.php?lang=en&sku=Wink%20D/W%20Sensor&cert=ZC10-17075685
http://manuals-backend.z-wave.info/make.php?lang=en&sku=Wink%20D/W%20Sensor&cert=ZC10-17075685
https://www.wink.com/help/products
https://www.wink.com/help/products

