
jUAV: A Java Based System for Unmanned Aerial Vehicles

Adam Czerniejewski, Shaun Cosgrove, Yin Yan, Karthik Dantu, Steven Y. Ko, Lukasz Ziarek
SUNY Buffalo

{adamczer, shaunger, yinyan, kdantu, stevko, lziarek}@buffalo.edu

ABSTRACT
Paparazzi UAV is one of the most popular open-source UAV plat-
forms in use today. The code base of Paparazzi UAV has served
as the basis for both C and Java open-source benchmarks for real-
time embedded systems. These benchmarks, PapaBench and jPa-
paBench, respectively, have been widely accepted by their respec-
tive communities as they provide a representative and complex work-
load. Both PapaBench and jPapaBench, however, do not utilize a
functional simulation in their execution, but rather focus on test-
ing the contention between tasks. In this paper, we first detail
our attempt at adapting jPapaBench to utilize the New Paparazzi
Simulator (NPS) developed by the Paparazzi UAV team which and
provides the underlying sensor models and allows for the use of
different Flight Dynamic Models (FDM) which simulate actual en-
vironmental influence on the airframe [1]. We then compare jPa-
paBench performance to its C-based inspiration, Paparazzi UAV
utilizing JSBSim as the FDM for both systems. Our results show
that jPapaBench is quite different in implementation and perfor-
mance from Paparazzi UAV. Following this finding, we target a
more direct port of Paparazzi UAV to Java named jUAV using a
one-component-at-a-time approach allowing for each component
to be validated in isolation for correctness. The paper then com-
pares the correctness of the initial prototype of jUAV consisting
of a subset of the Paparazzi UAV code implemented in Java. In
future work jUAV will be greatly beneficial to the real-time Java
community since it will provide a means for benchmarking real-
time JVMs with representative real-world workloads and allow for
an open-source solution used for flying airframes using real-time
Java.

1. INTRODUCTION
There is a growing need in the real-time Java community for

additional benchmarks as well as representative open-source appli-
cations to compare, test, and validate virtual machine implementa-
tions, language specification implementations, as well as new re-
search. While a number of benchmarks like CDx [13], jembench,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

and jPapaBench [14] 1 exist, to date there is no representative open-
source application that can be deployed in simulation and experi-
ment. Autonomous flight control is a good candidate for such a rep-
resentative application, as it is comprised of many complex subsys-
tems, heavily leverages I/O through sensor processing and actuator
control, is usually coupled with a payload application and therefore
has mixed-criticality requirements, and demands strict timeliness
guarantees for correctness of execution.

This autonomous flight control or autopilot is generally part of
larger system consisting of a ground station and the actual aerial
vehicle. The autopilot module which stabilizes the aircraft must
exist on the aerial vehicle as it must make adjustments based on the
environment quickly to remain in flight. The route that is followed
by the aircraft can be directed by a predefined in the embedded
autopilot allowing for truly autonomous flight, or directed by the
ground station. In most systems the ground station not only pro-
vides a means to collect data from the aircraft while it is in flight,
but also issue commands for takeoff, ascend, descend, land, etc..

The real-time Java community has already explored flight con-
trol through the JAviator project [10] and jPapaBench [14]. The
JAviator project provides a real-world UAV implementation. The
ground control implementation is partially developed in real-time
Java, but the onboard systems for the UAV are in C. Based on Pa-
parazzi UAV 2, an autopilot for unmanned aerial vehicles (UAVs)
and the PapaBench benchmark derived from Paparazzi UAV, jPa-
paBench is a complex benchmark workload consisting of many
tasks encompassing an autopilot module, a fly-by-wire module, and
a simulator module. As a benchmark, jPapaBench provides a way
for the community to compare VMs as well as different versions
and specifications of real-time Java, including the real-time specifi-
cation for Java (RTSJ) [8] 3 and safety critical Java (SCJ) [11] 4. It
is particularly suited for a VM deployed on a resource constrained
device, as it leverages multiple threads and a non-trivial amount of
memory, thereby stressing the VM’s scheduling infrastructure and
the memory management implementation.

However, as it stands, jPapaBench has several shortcomings that
do not make it suitable as a representative application for real-time
Java. Since jPapaBench was developed as a benchmark, it makes a
number of simplifications. First, it leverages pre-generated sets of
sensor values for its workloads. Although these values have been
generated by a simulator, they represent an idealized flight with no
requirement of stabilization and adjustment of the flight path at run-
time. Second, jPapaBench lacks the communication component for

1http://code.google.com/p/jpapabench/
2http://wiki.paparazziuav.org
3http://www.rtsj.org/docs/rtsj_1.0.2_spec.pdf
4http://download.oracle.com/otn-pub/jcp/safety_
critical-0_94-edr2-spec/scj-EDR2.pdf

interaction with the ground station. Finally, it does not simulate full
physics, and therefore represents a simplified flight dynamic model
and simplified simulation of on-board sensors, both of which result
in a drastically reduced computation and a flight control algorithm
that is not directly usable on an actual UAV.

Our ultimate goal is to create a Java based UAV system for bench-
marking JVMs on real-world UAV deployments and providing an
open-source representative application for the real-time Java com-
munity. In this paper we introduce our prototype system called
jUAV, consisting of just over 11,000 lines of code in its current
state, as well as its design and preliminary experiments. jUAV is
a more comprehensive version of jPapaBench that is capable of
working with the Paparazzi UAV’s framework. Specifically, our
effort will augment jPapaBench to benchmark JVMs on more real-
istic application loads in three aspects:

• Task scheduling with explicit synchronization between tasks

• Adding communication based I/O for communicating teleme-
try to the ground station and visualization components of Pa-
parazzi UAV.

• Adding sensor based I/O for communication to an advanced
flight dynamic model with a full fledge physics simulator for
precise flight simulation and sensor readings.

• Finally, we would like to have a benchmark that can be run
both in simulation as well as on an actual UAV

In the remainder of this paper, we first detail the difference be-
tween jPapaBench and Paparazzi UAV, and explain the need for
jUAV as a benchmark for the real-time JVMs. We then present
jUAV, a port of Paparazzi UAV in Java, as a real-time Java bench-
mark application that runs on real hardware devices. The current
stage of jUAV is a partial port of the Paparazzi UAV code that uses
cyclic executive to control the execution of the autopilot logic, fa-
cilitating a hybrid jUAV consisting of both Java and Paparazzi UAV
autopilot allowing for validation for the correctness of our ports
as each component is transitioned to Java. Experiments are then
presented comparing the component of the autopilot logic that per-
forms the horizontal attitude stabilization of an airframe for both
the original Paparazzi UAV and jUAV’s Java implementation. Once
the jUAV autopilot is completely running in Java we can leverage
the knowledge of jPapaBench to translate the cyclic executive mode
to the task-based model. The details of the development plan are
discussed in Section 2.3.

2. BACKGROUND AND MOTIVATION
In this section, we first briefly discuss the architecture of Pa-

parazzi UAV, PapaBench, and jPapaBench. We then explore jPa-
paBench’s limitations as a real-time JVM benchmark. Finally, we
outline the roadmap of jUAV project.

2.1 Paparazzi UAV
Paparazzi UAV [3] is an advanced and proven autopilot that han-

dles flight autopilot logic such as navigation, flight control, sen-
sor management, and wireless/radio communication. It provides
a set of GUIs to configure autopilot hardware settings and flight
course planning. The configuration files produced by the GUIs are
then compiled into autopilot logic, and deployed to the embedded
autopilot control board. Configuration includes hardware specific
1The boxes with color are the actual components for the real-time
aircraft, the boxes without color are simulated components for test-
ing and tuning.

Telemetry Data
Ground Command

Radio LinkGround Control Center

Telemetry
Data

Ground
Command

Message Backend
Server

Telemetry
data

Ground
Command

Embedded Autopilot

PC-Based Ground Control Station

Flight Dynamic
model

Sensors
Simulation

Ground Communication Bus

Telemetry
data

UAV Application

Hardware Modules

Flight Status

Sensor
Values

Flight
Model

FBWAutopilot SPI

Figure 1: Paparazzi UAV Architecture1.

configuration, where different types of sensors that are present on
the target platform are selected. Additionally, Paparazzi UAV has
support for both fixed-wing and rotor craft, including popular quad-
rotor UAVs. The type of airframe is also selected at configuration
time.

Execution of the autopilot can be done in one of two modes:
simulation or physical deployment. In simulation the autopilot is
hooked up to a physics simulator and typically is executed on a PC.
A physical deployment requires flashing the embedded board or
micro controller on the hardware of the UAV to be deployed. Dur-
ing autopilot execution, Paparazzi UAV can monitor and record the
status of the autopilot for the real-time visualization and off-line
analysis at its PC-based ground control station. Communication
is handled through a custom protocol, either executed on a PC in
the case of simulation or via wireless communication in case of a
physical deployment. Figure 1 shows an overview of the Paparazzi
UAV architecture divided in two parts: (1) Ground Control Station
(GCS) consists of a radio link, a ground control center and a back-
end message server; and (2) Embedded Autopilot, an Unmanned
Aerial Vehicle (UAV) application, includes three sets of fundamen-
tal features.

• Autopilot Logic runs autonomous navigation and aircraft
stabilization, and generates servo commands.

• Fly−By−Wire (FBW) module receives remote control com-
mands and drives aircraft’s servos based on the commands
received and the low-level safety options.

• Hardware modules collect sensor values and provide con-
trol to aircraft servos.

The timing requirement of the autopilot logic, the ability to test
it in simulation as well as in experiment on actual hardware, and its
availability as open-source software makes Paparazzi UAV an ideal
candidate for a real-time benchmark application. A simplified ver-
sion of Paparazzi UAV, PapaBench [16], has been adapted to test
real-time embedded systems. Although Paparazzi UAV’s autopi-
lot is a cyclic executive, PapaBench has modeled Paparazzi UAV’s
UAV application in Architecture Analysis and Design Language
(AADL). It analyzed the original code base, and split the autopilot
logic into separate tasks with timing constraints and dependencies.

2.2 jPapaBench: A Real-time Java Benchmark
jPapaBench is derived directly from PapaBench [16] and con-

sists of roughly 10,000 lines of code. jPapaBench takes task con-
figurations generated by PapaBench, and implements them as real-
time periodic threads. The original PapaBench implementation was

Embedded Autopilot

Autopilot

PC-Based Software

Visualization Component

Backend Message
Server

Ground Control Station

Telemetry
Data

 Ground
Cammand

PC-Based Simulation

Flight Dynamic Model
(NPS)

Sensors Simulation
Sensor Data

&
Flight Status

Figure 2: jUAV Architecture with Simulation.

not intended for functional execution (processing real data from
hardware), but rather for evaluation of WCET analysis tools. Thus,
the implementation of the autopilot logic in jPapaBench is sig-
nificantly simplified, and mainly aimed to get its tasks to behave
correctly with timing constraints. Specifically, there are two main
design points that make jPapaBench different from the real-world
context in Paparazzi UAV.

Firstly, the design of jPapaBench does not take the simulation of
the hardware architecture into account. In Paparazzi UAV, the au-
topilot logic involves sensor data readings and bi-directional data
transfer via wireless communication (telemetry data and ground
commands) between the aircraft and the ground station. In jPa-
paBench, the sensor simulation is simplified to copying simulated
sensor values from the flight dynamic model of jPapaBench to the
autopilot logic; the wireless communication is completely omitted.
Similarly, the autopilot logic and FBW components are running on
two different computational units communicating via a hardware
bus in Paparazzi UAV. jPapaBench merges them into a single ap-
plication that simulates the communication bus through a cyclic
queue. However, the hardware interrupt handling and data buffer-
ing can affect the actual execution of the UAV application at run-
time as these operations may introduce uncertainties during execu-
tion, such as task preemption, buffer overwriting etc., that a VM
would need to deal with.

Secondly, since jPapaBench is based on PapaBench, its design
also does not consider integration with other tools provided in Pa-
parazzi UAV, such as the physics simulation provided by NPS and
the ground station. According to our observation of the current
jPapaBench source code, the simulated flight model in jPapaBench
takes the current flight position and speeds and generates sensor
readings for later autopilot logic, such as navigation or stabiliza-
tion. Such simplicity results in unrealistic flight behaviors such as
1) the flight can only fly a straight line; 2) the flight is ever increas-
ing altitude (i.e. the aircraft is always ascending), both of which
are not representative. More detailed results will be discussed in
Section 4. In addition, a subset of the tasks implemented in jPa-
paBench, especially in the FBW components, are quite different
from their counterparts in Paparazzi UAV. For example, the safety
checking and telemetric logic is either hard coded or not imple-
mented, since it is not aimed to interact with the ground station.

Lastly, jPapaBench, does not provide any integration with the
configuration tools in Paparazzi UAV, including tracing and debug-
ging support. Such lack of integration impedes further development
as it makes debugging and testing more difficult.

2.3 Design Goals in jUAV
This paper is a first step in a larger effort that aims to create a

fully working Java autopilot (jUAV) running on real-world hard-
ware. In this paper, we show our current prototype of jUAV, which

has ported a subset of the autopilot logic for rotor-craft UAVs in Pa-
parazzi UAV. The resulting Java application has three major parts
running in cyclic executive mode: (1) A portion of the stabilization
algorithm from the original Paparazzi UAV. (2) A set of JNI func-
tions that interface the Java-based stabilization with flight model
simulation and ground station in Paparazzi UAV. (3) a set of aux-
iliary functions for conversion between different coordination sys-
tems, arithmetic and geometric computation with respect to rota-
tion and motion. The resulting artifact of the current prototype
jUAV provides us a way to prove the viability of our porting method-
ology described in section 3.2, and verify the correctness of our
Java-based autopilot logic against the ground truth — the original
simulation in Paparazzi UAV.

The next step of jUAV is to completely port autopilot logic in
Java, convert the cyclic executive mode to task-based mode, and
isolating the Java-based autopilot logic from flight model simula-
tion. We will split the current prototype into two executing units:
one is a simulation-based autopilot application written in Java, an-
other one is purely a flight model simulation as it is in Paparazzi
UAV. Such isolation requires extra communication channels from
the embedded autopilot to the PC-based simulation and the ground
station, as shown in Figure 2. Such communication introduces ex-
tra I/O operations for on-board hardware/simulation, as the com-
munication is enabled via TCP/IP or serial channels. Table 1 pro-
vides a side-by-side comparison among the simulated autopilot in
original Paparazzi UAV, jPapaBench, and jUAV.

Finally, if the simulation-based autopilot in jUAV can fly with
the PC-based simulation as the autopilot in Paparazzi UAV, it will
give us confidence in its correctness and a transition to an actual
UAV can follow. It is at this point that jUAV can be refactored to
work with not only standard JVMs but those that implement the
RTSJ or SCJ standards. Once complete, engineering time will be
spent on the integration with the hardware drivers required to fly on
actual hardware.

3. IMPLEMENTATION EXPERIENCE
As discussed in Section 2.3, jUAV aims to implement a Java ver-

sion of Paparazzi UAV that can be executed in real-time and also
on a hardware platform. The first step is to create a Java version of
the Paparazzi UAV autopilot running on a traditional JVM, and en-
able interaction between the Java autopilot application, NPS sim-
ulator and the ground station in Paparazzi UAV. The immediate
question to ask is “Why not implement jUAV using jPapaBench as
the starting point?”, since it is a well-accepted real-time benchmark
for real-time JVMs. In this section, we first report our experience
in extending jPapaBench to interact with the ground station in Pa-
parazzi UAV, and discuss the reason why we chose to implement
jUAV by porting the native source code of Paparazzi UAV. Finally,
we present our system design with details in Section 3.2.

3.1 Integrating jPapaBench with Ground Sta-
tion in Paparazzi UAV

The autopilot logic of jPapaBench is much simpler than the cur-
rent implementation found in Paparazzi UAV, since jPapaBench [14]
is derived from PapaBench [16], which itself is a watered down ver-
sion of a four-year-old snapshot of the embedded autopilot code in
Paparazzi UAV. We have conducted an experiment that compares
the recorded flight paths between the various versions and present
them later in Section 4.2. In this section we discuss two major dif-
ferences between the jPapaBench and Paparazzi UAV implementa-
tion in detail to provide a better intuition as to why the flight paths
vary significantly.
Different Coordinate Systems: In practice, there are several co-

Paparazzi UAV jPapaBench
(PapaBench)

Current Prototype
jUAV

Simulation-based
jUAV

Flight Dynamic
Model (FDM)

NPS in a single
application

Self-contained
computation in a single

application
NPS via JNI NPS via JNI in the

simulation application

Sensor
Simulation Simulated devices with local data

Simulated devices
connecting to the autopilot

application
Completeness

of FBW
Simulated radio link with
GCS; Failsafe checking placeholder tasks via JNI Same as Paparazzi

UAV

Completeness
of Autopilot

Same as the UAV
application on hardware close to Paparazzi UAV

Horizontal
Stabilization,

Remainder via JNI

Same as Paparazzi
UAV

Execution
Mode Cyclic executive Task based Cyclic executive Cyclic executive or

Task based

Table 1: Autopilot application comparison among Paparazzi UAV simulation, jPapaBench and jUAV

ordinate systems used to represent the navigation, control and po-
sitioning of an aircraft [4]. For example, an aircraft is normally
modeled with body coordinates in Euler angles or a rotation ma-
trix [15]. For autopilot navigation, two systems are used: North-
East-Down (NED) system for GPS and Earth-center, Earth-fixed
(ECEF) system, and an inter-mediate system that transforms NED
to Universal Transverse Mercator (UTM) for displaying in ground
station. However, jPapaBench utilizes longitude, latitude, and alti-
tude (LLA) for its internal representation and does not implement
any transformations between the aforementioned coordinate sys-
tems. This simplified coordinate system prevents any interaction
between the autopilot of jPapaBench and the ground station of Pa-
parazzi UAV, such as dynamic guidance to the autopilot or display-
ing the autopilot position.
Fly-By-Wire (FBW) Logic for FailSafe: Paparazzi UAV has sev-
eral built-in failsafe features ranging from automatic navigation
mode to manual control mode. The FBW logic includes the ba-
sic functionality for failsafe, including reading commands sent via
remote control, reading the autopilot commands, driving the servos
etc. However, jPapaBench only provides a shell implementation of
the FBW logic. According to our observation, most of the failsafe
checks in jPapaBench are hard coded or omitted. Since some of
the FBW logic is incomplete and mostly inconsequential, this dead
code may be eliminated via compilation, changing the workload
and affecting task scheduling at runtime.

3.2 Java Based Autopilot
As one can imagine, the code base of a UAV platform like Pa-

parazzi UAV is enormous. As discussed in Section 2.1, we notice
that Paparazzi UAV can be broken into two main components, the
Ground Control Station and the onboard autopilot. For the pur-
poses of jUAV, there is no need to reimplement the ground station
as it merely provides a means for the user to monitor and control the
air frame in both simulation and actual flight. Like both PapaBench
and jPapaBench, jUAV focuses on the onboard autopilot. However,
jUAV will integrate directly to the existing Paparazzi UAV Ground
Station and NPS simulation engine for testing. This ability to focus
on porting just the autopilot will not only facilitate a means of cre-
ating a benchmark that utilizes proven physics simulations, but also
allow us to reuse the well-tested Paparazzi UAV user components.

From investigation of the NPS simulation found in the Paparazzi
UAV code base, it is noted that NPS is essentially an extension to
the normal cyclic executive that facilitates communication between
the core Paparazzi UAV system and the simulation engine. This

extension allows for the simulated sensor values to be used in the
autopilot and rotor commands produced to be returned to the sim-
ulator. This extension is depicted in Figure 4. We can see the over-
all flow of the cyclic executive that is run in the NPS simulation.
In the initial port, the atmosphere characteristics are omitted since
their influence only allows the user to test environmental stimuli
transitively on the airframe via the physics simulation.

To facilitate the use of the Flight Dynamic Model, an underly-
ing physics simulator (JSBSim) and to allow for a fully function-
ing test environment, these components are currently triggered via
JNI calls in the cyclic executive. In the following block, each of
the sensors take on the form of a specialized periodic task ISen-

sor<SensorReading>. All periodic tasks provide two main func-
tions: an init and execute method. The sensors job is to get the
values from their respective hardware during execution if a prede-
fined interval has passed and convert any values as needed. The
hardware is simulated by the JSBsim and the values are copied into
their respective SensorReading data structures. In the next block,
the NPS’s autopilot extension executes checks to determine if there
are new readings in the sensors, performs any required computa-
tions, and populates the autopilot’s native data structures via JNI
calls.

For the prototyping of jUAV discussed in this paper, the Java
autopilot implementation was scoped to the horizontal attitude sta-
bilization portion of the autopilot. To facilitate the ability to focus
on such a specific portion of the autopilot while ensuring a fully
functioning simulation, a series of JNI calls were introduced to the
original Paparazzi UAV code to maintain the remaining functional-
ity.

For the call-graph in Figure 3 the shaded sections shown have
been ported into the jUAV code as Java, the remainder of the blocks
are facilitated using a series of encapsulating JNI calls to allow nor-
mal execution. This approach of using JNI to port one section of
the call graph at a time ensuring that each component can be tested
in isolation ensuring correctness prior to moving on. The porting
process consists of identifying the component to be ported, hori-
zontal attitude stabilization in the case of this paper, and beginning
as close to the cyclic executive as possible. Then one function at
a time is ported to Java and any calls deeper are filled in with JNI.
Once the ported logic has been tested by executing the Paparazzi
UAV simulation verifying correctness the process is repeated until
the targeted leaf call has been verified correct. After a module has
been completed and uses no JNI the code may then be refactored to
be more object oriented. Section 4.2 and Section 4.3 detail perfor-

guidance_h_runstabilization_attitude_
run

guidance_h_traj_
run

guidance_h_update_
reference

stabilization_attitude_
set_rpy_setpoint_i

handle_periodic_
tasks

telemetry_
periodic failsafe_check main_periodic

nps_autopilot_
init

main_init

main

nps_main_periodic nps_sensors_init

nps_autopilot_run_
step

nps_autopilot_run_
systime_step

nps_sensors_run_step

nps_sensor_mag_
run_step

nps_sensor_accel_
run_step

nps_sensor_gyro_
run_step

nps_sensor_gps_
run_stepautopilot_init

autopilot_check_in_flight

main_event

autopilot_on_rc_frame
guidance_h_

init

guidance_v_run

run_hover_loop

autopilot_set_mode

guidance_v_read_rc

guidance_h_read_rc

autopilot_periodic

stabilization_attitude_set_
failsafe_setpoint

Figure 3: Simplified Program Call Graph for Paparazzi UAV

Simulation Devices

Gyroscope

Accelerometer Magnetics

GPS

NPS
(flight dynamic model)

JSBSim

Environment
Simulation

Ground Station

Dynamic Plan

Visulization

PC Based Software Embedded Autopilot

Autopilot Logic

Stabilization

Navigation

…

FBW Logic

Radio Control

FailSafe

…

FDM Status
(JNI/Network bus)

sensor data (local variables)

Simulated
SPI Bus

Rotor
Commands

Logging Messages

Navigation
Commands

Figure 4: jUAV Data Flow Chart

mance and correctness comparison between jUAV and Paparazzi
UAV will be discussed. In stabilization attitude run the
values required for computation are fetched from the native Pa-
parazzi UAV computed on and the results are returned to the native
Paparazzi UAV data-structures.

The current control mechanism in the jUAV code consists of a
cyclic executive who’s initialization function creates the periodic
tasks and assembles them into a list. The set of periodic tasks that
currently exist within jUAV are the JNI calls to FDM, a Java im-
plantation of each of the sensors, and the hybrid autopilot task con-
sisting of both Java and JNI as seen in Figure 3. These tasks then
continually run in the order they were added to the list during exe-
cution. Such task scheduling to make a cyclic executive will easily
allow the control loop to be changed to a multi threaded task based
controller. Transitioning to a task based controller will allow the
autopilots tasks to operate with different importances the ability to
test mixed-criticality requirements.

3.3 Physics Simulation
To enable more realistic simulation, we integrate the Java-based

autopilot with the NPS simulation in Paparazzi UAV. The original
autopilot is coupled with the NPS simulation, and runs both autopi-
lot logic and simulation computation in a single process with cyclic
executive. The simulated sensor devices are a logical division that
can be used to split the NPS simulation and autopilot logic, as the
data structure they compute on are identical, i.e., the autopilot logic
uses the data structure that represents the status of autopilot and the
NPS simulation utilizes its own flight model data structure. In the
cyclic execution, the status generated in the FDM is fed into the
simulated sensors for the autopilot logic, and the autopilot logic
produces servo commands that are sent back to the FDM.

In the prototype phase, we focused on allowing the C based im-
plementation to be utilized in Java. The interfaces between the Java
autopilot and the NPS simulation have been implemented as a set
of JNI calls. In the completed implementation, the use of a system
network bus will replace the JNI calls, since the autopilot logic and
the NPS simulation will run on separate computational units. A
major hurdle for the communication is to ensure the messages are
formed correctly and passed appropriately through different chan-
nels. It will be imperative to ensure appropriate processing of mes-
sages while maintaining the scheduling of the autopilot logic, tran-
sitioning data between the PC based NPS simulation and the em-
bedded autopilot. As Figure 4 shows, to keep the realistic nature
of our simulated Java autopilot, a simulated SPI bus with a two
socket pipeline that enables bi-directional communication between
the autopilot logic and FBW logic will be implemented. The com-
munication between the PC based software and embedded autopi-
lot can leverage either Ethernet or serial as simulated multi-channel
radio communication. According to our study, the downlink data
in Paparazzi UAV communicates the motor commands and autopi-
lot position information to the ground station, which are critical
to ensure the correctness of the autopilot logic. In the real-world
autopilot in a deployed version of Paparazzi UAV, these messages

−400
−300
−200
−100

0

100

200

300

400

−
1000

−
800

−
600

−
400

−
200

0 200
400

600
800

1000

Y
(m

)

X (m)

Flight Path
Way Point 1
Way Point 2

(a) X, Y GPS on Paparazzi UAV

−100

0

100

−
600

−
400

−
200

0 200
400

Y
(m

)

X (m)

Flight Path111
Way Point 1
Way Point 2

(b) X, Y GPS on jPapaBench

1800

1900

2000

2100

2200

2300

2400

2500

2600

0 100 200 300 400 500 600 700

A
lti

tu
de

(m
)

Sequence Number

(c) Altitude on Paparazzi UAV

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 100 200 300 400 500 600 700

A
lti

tu
de

(m
)

Sequence Number

(d) Altitude on jPapaBench

Figure 5: Flight Path Comparison on Simulated Microjet Between Paparazzi UAV and jPapaBench

can use dedicated channels for radio communication where as the
rest of the logging messages share the same channel. In jUAV, we
will simulate this behaviour with different TCP/IP communication
channels.

4. EVALUATION
To evaluate how close to reality jPapaBench simulations are, we

show a comparison of flight paths between Paparazzi UAV and
jPapaBench. To show the correctness of the jUAV prototype, we
present a flight path comparison between jUAV and Paparazzi UAV.
The performance of jUAV is compared Paparazzi UAV by measur-
ing the time cost associated with the horizontal attitude stabiliza-
tion components computation for both Paparazzi UAV and jUAV’s
Java implementation. All of the experiments are conducted us-
ing Oracle Java version 1.7.0 80, on a standard personal computer,
equipped with Intel i7-4700 Processor and 16GB RAM running
Ubuntu 14.04 LTS.

4.1 Flight Path: Paparazzi UAV v.s jPapaBench
To show the difference between jPapaBench and Paparazzi UAV,

we have conducted an experiment comparing the recorded flight
path on both of their UAV systems. Since jPapaBench can only fly
a fixed-wing flight with its built-in flight plans that guide the flight
to pass different way-points, we configure the simulated autopilot
in Paparazzi UAV to mirror the same flight path. Thus, both of
the flight plans are configured to travel between two way-points,
i.e., the autopilot is first launched from its start position, climbs in

altitude and then navigates to the first way-point and then to the
second.

The coordinates and altitude are derived from messages the UAV
sends to the ground station during simulation. Each flight path
graph is offset such that the plane starts at the [0,0] position in
the N and E plane. As the coordinate system for the GPS mes-
sages is North East Down (NED), these are the values we chose to
represent in the graph but for simplicity, they can be viewed as a
distance from the initial position in X and Y coordinates. Figure 5a
and Figure 5b shows the comparison of the flight path for Paparazzi
UAV and jPapaBench. The change in altitude over time is given in
Figure 5c and Figure 5d. In Paparazzi UAV, the flight makes dy-
namic adjustments in its flight path until it precisely reaches the
way-point. The flowing nature of the graphs represent the interac-
tion of the simulated physical plane, the physics of the planes of
motion in the atmosphere and the autopilot trying to meet its tar-
gets. However, inspection of the flight path created in jPapaBench
highlights the fact that the simulated flight model is much more
simplistic and just computes the route for aircraft by directly tar-
geting the next way point with no realistic dynamics. It is evident
that the lack of simulation of physics results in a simplified flight
trace as seen in Figure 5b.

4.2 Flight Path: Paparazzi UAV v.s jUAV
To show the correctness of our Java Based autopilot implementa-

tion in jUAV, we have repeated the above experiment on Paparazzi
UAV and jUAV. However, in this case, our ultimate airframe is a

−25

−20

−15

−10

−5

0

5

0 5 10 15 20 25 30 35 40 45

X
(m

)

Y (m)

Flight Path
Standby Point
Circling Point

(a) X, Y GPS on Paparazzi UAV

−25

−20

−15

−10

−5

0

5

0 5 10 15 20 25 30 35 40 45

X
(m

)

Y (m)

Flight Path
Standby Point
Circling Point

(b) X, Y GPS on jUAV

0

5

10

15

20

25

30

35

40

45

0 50 100
150

200
250

300

A
lti

tu
de

(m
)

Sequence Number

(c) Altitude on Paparazzi UAV

0

5

10

15

20

25

30

35

40

45

0 50 100
150

200
250

300

A
lti

tu
de

(m
)

Sequence Number

(d) Altitude on jUAV

Figure 6: Flight Path Comparison on Simulated Quad LisaM 2 Between Paparazzi UAV and jUAV

quad-copter, and the comparison is based on a rotor-craft UAV sim-
ulation for the (Quad LisaM 2). During these experiments, both
autopilots are guided by the ground station to follow the same flight
plan. This plan begins with normal take off procedures followed by
an ascent. Upon ascent, the air frame stabilizes at a standby posi-
tion near the point of take-off. Shortly after the airframe then moves
towards a point that it will circle for five iterations.

The coordinates and altitude are the same as the previous com-
parison between Paparazzi UAV and jPapaBench, but we do not
need to calibrate the origin of the coordinates with the starting
point, as both Paparazzi UAV and jUAV are using the same starting
point and way points. Figure 6a and Figure 6b show the comparison
of the flight path between Paparazzi UAV and jUAV. The change in
altitude over time is given in Figure 6c and Figure 6d. As the fig-
ures indicate, the flight path of jUAV is nearly identical to the one
in Paparazzi UAV. This makes sense since the Java based autopilot
in jUAV mirrors the exact same autopilot logic in Paparazzi UAV.
There is some deviation between the flight paths of Paparazzi UAV
and jUAV. This deviation likely comes from the fact that during the
simulation Paparazzi UAV and our derivative work add a random
noise to the sensor reading as it enters the sensor data-structures to
simulate the precision of actual sensor readings. Though there are
differences it is clearly observed that both UAVs flight paths once
stabilized circle the Circling Point in identical circle.

4.3 Timing Performance: Paparazzi UAV v.s
jUAV

To evaluate the timing performance and verify the viability of the
Java based UAV autopilot, we have collected the time duration for
periodically released logic including: 1) the entire autopilot logic,
2) the stabilization logic, which is one of the critical computations
in the autopilot logic. The experiments are executed over 5 min-
utes on both Paparazzi UAV and jUAV. To warm up the JVM for
jUAV, we discard the first 20,000 samples, and compare the time
duration for each iteration on the remaining samples between both
experiments.

Figure 7 shows the comparison of time durations for autopilot
logic. All time durations on Paparazzi UAV are ranging from 15
µs to 200 µs. Most of time durations are in the same range on
jUAV except a few spikes. According to our runtime profiling dur-
ing experiments, the spikes seen in Figure 7b are attributed to the
pause from garbage collection (GC). We envision that these GC
pauses will be significantly reduced once we utilize a real-time
JVM. Figure 8 shows the comparison of time durations for stabi-
lization logic. The purple lines on Figure 8a and Figure 8b are time
durations of stabilization logic on Paparazzi UAV and jUAV respec-
tively. The time duration on jUAV is 30% to 40% higher than the
time duration on Paparazzi UAV as we only port the stabilization
related computation in the Java-based jUAV. It still needs to inter-
face with the data structures in the native implementation via JNI.
There are 6 getter/setter functions that are called in the Java-based
stabilization logic. To show a pure computational comparison, we
plot a green line on both Figure 8a and Figure 8b. It presents the
time durations of the Java-based stabilization computation on jUAV

0

200

400

600

800

1000

1200

1400

1600

20000

50000

100000

150000

200000

250000

300000

D
ur

at
io

n
(u

s)

Number of Release

(a) Paparazzi UAV

0

200

400

600

800

1000

1200

1400

1600

20000

50000

100000

150000

200000

250000

300000

D
ur

at
io

n
(u

s)

Number of Release

(b) jUAV

Figure 7: Comparison of Time Duration for Autopilot Logic

0

10

20

30

40

50

60

70

20000

40000

60000

80000

100000

120000

140000

D
ur

at
io

n
(u

s)

Number of Release

Paparazzi
jUAV without JNI

(a) Paparazzi UAV

0

10

20

30

40

50

60

70

20000

40000

60000

80000

100000

120000

140000

D
ur

at
io

n
(u

s)

Number of Release

jUAV
jUAV without JNI

(b) jUAV

Figure 8: Comparison of Time Duration for Stabilization Logic

that excludes the time cost of JNI (jUAV without JNI). As Figure 8a
shows, the time duration on Paparazzi UAV and jUAV without JNI
show a pattern. Similar to the time duration of the entire autopilot
logic, due to the GC pauses, there are a few spikes in the plot of
jUAV without JNI. These can potentially be eliminated by the use
of a real-time JVM.

In conclusion, the time comparisons show that our Java-based
jUAV has a reasonable performance in time perspective. Although
it suffers from traditional Java application performance issues—
JNI and garbage collection, we believe these problems can be re-
solved, once we move to a real-time Java virtual machine, like Fi-
jiVM [17].

5. RELATED WORK
There have been lots of emerging projects that build UAV plat-

forms for industrial products or academic research, but only a few
works focus on implementing an autopilot application in a man-
aged language. To the best of our knowledge, ScanEagle [2] is the
first autopilot application written in Java. It is based on a real-time
JVM with RTSJ compliance. Due to the fact that the source code
of the ScanEagle project is not publicly accessible, it is difficult
if not impossible to fully understand the implementation. Another
notable Java UAV platform JAviator [6] offers a means for UAVs
to be flown while controlling from the ground station. The cur-

rent implementation does not offer self-contained autopilot that al-
lows for predefined routes to be flown by the airframe. Instead,
the airframe must be in constant contact with the Ground Station
so that it can request the latest navigation data[9]. JAviator how-
ever, implements a flight control system (airframe stabilization)
that runs on the airframe with four alternative controller imple-
mentations: 1) JControl, a Java-thread-based implementation; 2)
EControl, An Exotask-based controller written in Java; 3) CCon-
trol, a Linux-process-based controller written in C; 4) TControl, a
micro-kernel-based controller written in a real-time micro-kernel
called Tiptoe. Though these variations of the flight control system
exist in JAviator, the only variation found in its released code base
is the CControl implementation [10], making the currently publicly
available system a hybrid of Java and C. One of design benefits to
the JAvaitor platform, is that it targets a platform which was devel-
oped tandem to the software base meaning that it need only worry
about developing the code to connect to the hardware once. Pa-
parazzi on the other hand, chose to make their platform usable by
multiple air frames and due to the widespread use of the Paparazzi
UAV, many airframes are already supported by the system. This
means that any system that can integrate directly with Paparazzi
UAV can utilize much of the existing hardware specific connector
code. Another point of note, is that only the stabilization code is
run on the airframe. Routing is determined by the ground station,

and communicated back to the airframe meaning that the airframe
may not currently be flown independent of the ground-station. The
JAviator projects real-time Java component is not facilitated by the
standard RTSJ. Unlike the JAviator project jUAV aims to provide a
open-source platform built to the RTSJ standard thereby creating a
means for the community to benchmark real-time JVMs.

There are various micro-benchmarks in RTSJ [5, 7] however as
pointed out by Kalibera et al. [12] they only test very specific com-
ponents independent to the rest of the system and external stim-
uli. CDx has provided a more complicated collision detection and
avoidance benchmark, this system introduces artificial air traffic
and synthetic noise to stress the JVMs capabilities. Though CDx
is a vast improvement on micro-benchmarks the authors acknowl-
edge that their benchmark is rather simplistic and there is a need
for more realistic real-time task based benchmarks [13].

6. CONCLUSION
The real-time Java community has identified a necessity for bench-

marks that recreate the complexity seen in real world deployments.
The current benchmarks used in testing RTSJ and SCJ, like jPa-
paBench, do represent a complex system and give a good sense
of the performance of a given JVM. However, the workloads on
these systems are still lacking the complexity seen in the physical
world. The jUAV project seeks to re-create the complexity found
in real deployments by introducing real world physics simulation
on the aerial vehicle requiring the autopilot to respond as would be
required on an actual UAV. This integration with full physics sim-
ulation will allow the real-time Java community to validate their
design prior to testing on actual systems, where failure could poten-
tially mean the loss of life or expensive equipment. In this work, we
have outlined the development of jUAV in three phases. We have
also shown results from the first phase of implementation which in-
cluded portions of the autopilot. Results show that the simulations
are similar to Paparazzi UAV, a well known autopilot and simu-
lation framework that has been previously deployed on aircrafts.
This gives us the confidence that we will be successful in creating a
real-world benchmark that meets our goals of timeliness while be-
ing able to control a real-world UAV. Our code is open-source and
available for everyone to use, detailed instructions needed to setup
and run jUAV can be found in Appendix A.

References
[1] New paparazzi simulator. http://wiki.paparazziuav.

org/wiki/NPS.

[2] A. Armbruster, J. Baker, A. Cunei, C. Flack, D. Holmes, F. Pi-
zlo, E. Pla, M. Prochazka, and J. Vitek. A real-time java vir-
tual machine with applications in avionics. ACM Transactions
on Embedded Computing Systems (TECS), 7(1):5, 2007.

[3] P. Brisset, A. Drouin, M. Gorraz, P. Huard, and J. Tyler. The
paparazzi solution. rapport technique, 2006.

[4] G. Cai, B. M. Chen, and T. H. Lee. Coordinate systems and
transformations. In Unmanned Rotorcraft Systems, pages 23–
34. Springer, 2011.

[5] A. Corsaro and D. C. Schmidt. Evaluating real-time java
features and performance for real-time embedded systems.
In Real-Time and Embedded Technology and Applications
Symposium, 2002. Proceedings. Eighth IEEE, pages 90–100.
IEEE, 2002.

[6] S. Craciunas, C. Kirsch, H. Röck, and R. Trummer. The javi-
ator: A high-payload quadrotor uav with high-level program-
ming capabilities. Proc. GNC, 2008.

[7] B. P. Doherty. A real-time benchmark for javaTM. In Pro-
ceedings of the 5th international workshop on Java technolo-
gies for real-time and embedded systems, pages 35–46. ACM,
2007.

[8] J. Gosling and G. Bollella. The Real-Time Specification
for Java. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[9] http://javiator.cs.uni-salzburg.at/system/

javiator_software_system/ground_control_

system.html.

[10] javiator-github. https://github.com/cksystemsgroup/

JAviator.

[11] JSR 302. Safety Critical Java Technology, 2007.

[12] T. Kalibera, J. Hagelberg, P. Maj, F. Pizlo, B. Titzer, and
J. Vitek. A family of real-time java benchmarks. Concurrency
and Computation: Practice and Experience, 23(14):1679–
1700, 2011.

[13] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek, B. Titzer, and
J. Vitek. Cd x: a family of real-time java benchmarks. In
Proceedings of the 7th International Workshop on Java Tech-
nologies for Real-Time and Embedded Systems, pages 41–50.
ACM, 2009.

[14] T. Kalibera, P. Parizek, M. Malohlava, and M. Schoeberl. Ex-
haustive testing of safety critical Java. In Proceedings of the
Workshop on Java Technologies for Real-Time and Embedded
Systems, JTRES ’10, pages 164–174, 2010.

[15] T. Luukkonen. Modelling and control of quadcopter. Indepen-
dent research project in applied mathematics, Espoo, 2011.

[16] F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and
M. De Michiel. Papabench: a free real-time benchmark. In
OASIcs-OpenAccess Series in Informatics, volume 4. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2006.

[17] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and
J. Vitek. Schism: fragmentation-tolerant real-time garbage
collection. In Proceedings of the 2010 ACM SIGPLAN con-
ference on Programming language design and implementa-
tion, PLDI ’10, pages 146–159, New York, NY, USA, 2010.
ACM.

Appendices
A. USING jUAV

The current prototype of the jUAV code base consists of two
repositories that need to be cloned:

• Modified Paparazzi UAV (https://github.com/adamczer/paparazzi-
native-jni)

• jUAV (https://github.com/adamczer/pappa)

A.1 Building Paparazzi UAV and jUAV
The Modified Paparazzi UAV repository is a fork of Paparazzi

UAV v5.8 stable. Directions on how to build this code can be found
on the Paparazzi UAV wiki at http://wiki.paparazziuav.org/wiki/Installation.

Once the modified version of Paparazzi UAV has been built one
can now create the required shared libraries for the jUAV JNI calls:
1) Execute the paparazzi.sh located in PAPARAZZI HOME.
2) Select the Quad Lisa M2 for the airframe and the NPS as the
simulator.
3) Click the build button initiating the build process for the air-

frame.
4) Copy the created shared library from PAPARAZZI HOME/var/

aircrafts/Quad LisaM 2/nps/libpapa.so to the jUAV sources
paparazzi-jni/libs/.

With the shared library where it is required, one can now build
jUAV using Apache Maven. Assuming Maven is installed one need
only execute ”mvn install” in the root of the jUAV checkout.

A.2 Running jUAV
With the code now built, one can return to the Paparazzi UAV UI

doing the following:
1) Select Quad LisaM 2 and NPS if not already selected.
2) Click Execute.
3) Click Stop on the ”Simulator”.
4) Change the ”Simulator” command by appending ”–java yes”
5) Click Execute

The Simulation will now be using the jUAV code base. The
above instructions are subject to change, however if they do change
the updated instructions will be found on the jUAV GitHub.

