
5

Gesto: Mapping UI Events to Gestures and Voice Commands

CHANG MIN PARK, TAEYEON KI, ALI J. BEN ALI, NIKHIL SUNIL PAWAR,
KARTHIK DANTU, STEVEN Y. KO, and LUKASZ ZIAREK,
University at Buffalo, The State University of New York, USA

Gesto is a system that enables task automation for Android apps using gestures and voice commands. Using
Gesto, a user can record a UI action sequence for an app, choose a gesture or a voice command to activate the
UI action sequence, and later trigger the UI action sequence by the corresponding gesture/voice command.
Gesto enables this for existing Android apps without requiring their source code or any help from their
developers. In order to make such capability possible, Gesto combines bytecode instrumentation and UI action
record-and-replay.

To show the applicability of Gesto, we develop four use cases using real apps downloaded from Google
Play—Bing, Yelp, AVG Cleaner, and Spotify. For each of these apps, we map a gesture or a voice command to
a sequence of UI actions. According to our measurement, Gesto incurs modest overhead for these apps in
terms of memory usage, energy usage, and code size increase. We evaluate our instrumentation capability
and overhead using 1,000 popular apps downloaded from Google Play. Our result shows that Gesto is able to
instrument 94.9% of the apps without any significant overhead. In addition, since our prototype currently
supports 6 main UI elements of Android, we evaluate our coverage and measure what percentage of UI element
uses we can cover. Our result shows that our 6 UI elements can cover 96.4% of all statically-declared UI element
uses in the 1,000 Google Play apps.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing systems and
tools; User interface management systems;

Keywords: gestures; voice commands; record and replay; mapping UI events;

ACM Reference Format:
Chang Min Park, Taeyeon Ki, Ali J. Ben Ali, Nikhil Sunil Pawar, Karthik Dantu, Steven Y. Ko, and Lukasz Ziarek.
2019. Gesto: Mapping UI Events to Gestures and Voice Commands. In Proceedings of the ACM on Human-
Computer Interaction, Vol. 3, EICS, Article 5 (June 2019). ACM, New York, NY. 22 pages. https://doi.org/10.
1145/3300964

1 INTRODUCTION
Users of mobile devices have long been locked into hierarchical user interfaces displayed on device
screens. Users often find themselves clicking through several menus and buttons to perform a given
task such as playing music, checking news, closing background apps, and others. This is inefficient,
attention-hungry, and ultimately restrictive. It requires users to perform multiple UI actions before
finishing a task. It also requires full attention from users since they need to look at their device’s
screen while interacting with the interface. It ultimately makes it difficult or even impossible to

Authors’ address: Chang Min Park; Taeyeon Ki; Ali J. Ben Ali; Nikhil Sunil Pawar;
Karthik Dantu; Steven Y. Ko; Lukasz Ziarek, {cpark22,tki,alijmabe,npawar,kdantu,stevko,lziarek}@buffalo.edu,
University at Buffalo, The State University of New York, Department of Computer Science and Engineering, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
2573-0142/2019/6-ART5 $15.00
https://doi.org/10.1145/3300964

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

https://doi.org/10.1145/3300964
https://doi.org/10.1145/3300964
https://doi.org/10.1145/3300964

5:2 Chang Min Park et al.

use a mobile device when the device is out of reach, its screen is not viewable, and/or when a user
cannot completely disengage from her other activities to interact with her device.

Recent developments in gesture-based interfaces [11, 28, 32, 39, 44, 45, 48, 49] and voice com-
mands [12, 14, 22, 35] are rapidly improving this status quo. These new interfaces provide flat,
rather than hierarchical, interfaces; users can perform a complicated UI task that requires multiple
UI actions with a single gesture or a voice command. These interfaces free their users from the
requirement of looking at a device screen, broadening the set of possible interactions between users
and their devices.

However, users are still not able to fully enjoy the benefits of gesture-based interfaces and voice
commands. This is because it requires support from app developers. Although libraries do exist
(e.g., Intel Context Sensing SDK [26], Sensey [46], Google Assistant SDK [23], Alexa SDK [13],
Cortana SDK [36], and SiriKit [15]), many existing apps currently do not leverage them. While
these libraries provide excellent gesture and voice recognition, their integration to individual apps
is left to the respective developers. This means that app developers need to either pre-define a set of
tasks that users can perform with gestures and voice, or develop a flexible mechanism for users to
define custom tasks to be triggered by gestures or voice. The former restricts users to a limited set
of tasks; the latter can potentially be non-trivial. In both cases, it is an extra development burden
which many app developers do not venture into.

To simplify such integration, we have developed Gesto, an end-to-end system that enables task
automation with gestures and voice commands for existing apps. Gesto allows a user to record a
sequence of UI actions, map the sequence to a gesture or a voice command, and later replay the
sequence with the mapped gesture or voice command. Gesto provides flexibility to users since
they can define customized UI action sequences and map them to gestures or voice commands.
Gesto eliminates the additional development burden on the developers as it automatically adds the
task automation functionality to an existing app without requiring app source code or developer
intervention. Gesto supports a wide range of gestures (e.g., Shake, Chop, Tap) and custom voice
commands that users choose. Since it makes use of well-known third party libraries for gesture/voice
recognition, this set of gesture/voice commands can be expanded by integrating future third-party
libraries that perform these tasks.

Gesto enables such task automation by combining two techniques—bytecode instrumentation
and UI record-and-replay. First, Gesto’s bytecode instrumentation allows functionality injection
without the need for source code. Thus, a developer can run Gesto instrumentation before releasing
an app in order to add task automation features. Gesto automatically captures UI elements and
frees the developer from cumbersome engineering work. Similarly, a (power) user can download
an app, run the app through Gesto on a desktop, and install the app on a mobile device to start
using gestures and voice commands to automate custom tasks. Since bytecode instrumentation for
UIs is inherently specific to platforms and languages, we have built Gesto for Android apps and
have solved Android specific challenges. Gesto does not require root access or a custom OS unlike
previous systems [7, 20, 24, 25, 31, 40].

Second, Gesto’s UI record-and-replay enables a user to record a sequence of UI actions and
later replay it. In order to achieve this, Gesto analyzes an app’s bytecode, identifies UI objects and
enables recording and replaying of UI object interactions. Since Gesto’s goal is task automation,
it implements a full UI record-and-replay mechanism rather than a mobile deep link mechanism,
where the goal is creating a “bookmark” of a UI page for an app [16, 34]. For example, if a user
wants to automate multiple device management tasks at once (all provided by a single app such as
AVG Cleaner [37]), e.g., cleaning cache and app history, Gesto is able to automate such a sequence
while deep links cannot.

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

Gesto: Mapping UI Events to Gestures and Voice Commands 5:3

Select
(Gestures or Voice)

UI Actions

Record

Replay

Start FinishUI Actions

Trigger
(Gestures or Voice)

Recorded UI Actions

Perform

Fig. 1. Gesto Workflow

Although our overall contribution is the design of an end-to-end system, our UI record-and-
replay technique also has contributions on its own. First, our technique works at the level of
UI objects rather than pixel coordinates. Thus, our technique is not sensitive to device screens;
once a recording is done, it can potentially be replayed across different devices that a user has.
Second, we address a key problem that arises when recording and replaying at the UI object level
on Android—that there has to be a way to uniquely identify a UI object in order to correctly record
the use of it and replay it later. It turns out that this is a challenging problem, since Android does
not require every UI object to have an ID and real-world apps often do not assign an ID for every
UI object. To the best of our knowledge, all previous object-level record-and-replay approaches
(e.g., using AccessibilityService on Android) require every UI object to have an ID. As a result,
they do not correctly work with real-world apps. In Gesto, we implement a mechanism that solves
this problem. We detail how previous approaches rely on object IDs in Section 7.

In order to show the applicability of Gesto, we have developed four use cases—(i) playing music
on Spotify using a gesture, (ii) searching for keyword-based news (e.g., “latest price of Bitcoin”) on
Bing using voice, (iii) searching for nearby businesses on Yelp using a gesture, and (iv) performing
device clean-up tasks (e.g., cleaning cache and app history) on AVG Cleaner using a gesture. In
all these cases, Gesto provides user-defined task automation with modest overhead in terms of
memory, energy consumption, and code size increase. We have also evaluated our instrumentation
capability by downloading 1,000 popular apps from Google Play and instrumenting them. Our
result shows that Gesto can instrument 94.9% of the apps (949 apps).

Overall, our contributions are as follows.
• We develop an end-to-end system that enables task automation using gestures and voice into

existing Android apps automatically. Our system does not require app source code or developer
involvement.

• We develop a UI record-and-replay technique that works at the level of UI objects on Android,
even when an app does not have an ID for every UI object.

• We show that our system is applicable by demonstrating four use cases. We also show that our
system is light-weight by showing that it incurs modest overhead.

2 USAGE MODEL
Before discussing the design and implementation of Gesto, we first describe our usage model to
help the reader understand how Gesto operates.

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

5:4 Chang Min Park et al.

Category UI Element Callback Method
Example

Button Button onClick
RadioButton onRadioButtonClicked
ToggleButton onToggleClicked

Clickable View TextView onClick
ImageView onClick

Text Box EditText onTextChanged

Check Box CheckBox onCheckBoxClicked
Switch onCheckedChanged

Bar Type SeekBar onProgressChanged
RatingBar onRatingChanged

Item Selection ListView onItemClick
Spinner onItemSelected

TimePicker onTimeChanged
NumberPicker onValueChange
DatePicker onDateChanged

Table 1. User Interactive Element Examples

1 // In a layout XML file

2 <Button android:text="button"

3 ...

4 android:onClick="example_method" />

5
6 // In an app class

7 void example_method(View v){

8 // Developer Code

9 }

Fig. 2. Statically Declaring a UI Element in a UI
XML file and Registering a Callback

1 Button b = (Button) findViewById(R.id.button);

2 b.setOnClickListener(new View.OnClickListener() {

3 public void onClick(View v) {

4 // Do something in response to button click

5 }

6 });

Fig. 3. Programmatically Registering a Callback

Usage at App Development/Instrumentation Time: Gesto is a static bytecode instrumenta-
tion tool that injects new bytecode into an existing Android app and rewrites some parts of the
app’s bytecode (more details on this in Section 3.6). It takes an existing Android app (a .apk file)
as input, instruments the app, and produces another version of the app that is now capable of
task automation using gestures and voice. A few ways are possible to use this tool: (i) a developer
can run it on the developer’s machine to transform an app that the developer has written before
releasing it to an online app market, (ii) a user can run it on the user’s machine to transform an
app that the user downloads from an online app market such as Google Play, and (iii) a third party
can provide a web service that runs the tool in the cloud.

Once instrumented, a developer can deploy the new version of an app on Google play store, or a
user can install the app on a regular Android device just like any other Android app. It does not
require any special privilege (such as rooting) to work properly.

Usage at Run Time: Once an app is Gesto-enabled and installed on an Android device, a user
can automate custom tasks using gestures and voice commands. In order to create a UI task to be
automated for an app, a user needs to (i) open the app, (ii) perform the “start recording” command
(currently, a pre-registered gesture), (iii) perform a gesture or record a voice command that will
be used as the trigger for replaying, (iv) record a sequence of UI actions to be automated, and (v)
perform the “stop recording” command (another pre-registered gesture). In our current prototype,
waving once near a device starts recording; waving twice near a device stops recording. Figure 1
depicts these run-time workflows.

After a user finishes mapping a sequence of UI actions to a gesture or voice command for an app,
the user can simply perform the gesture or speak the voice command to trigger the action sequence
when the app is open. We can further automate app opening by instrumenting the main app
launcher of the user’s device using Gesto, since app launchers are regular Android apps. However,
Gesto currently does not support cross-app task automation. We discuss this more in Section 6.

3 SYSTEM DESIGN AND IMPLEMENTATION
In this section, we discuss how Gesto automatically enables task automation using gestures and

voice for existing apps. First, we provide background on Android UI that is necessary to understand
how Gesto works. We then discuss how our record-and-replay mechanism works, how we map
recorded UI action sequences to gestures or voice commands, and how to inject such funcitonality
into an existing app.

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

Gesto: Mapping UI Events to Gestures and Voice Commands 5:5

3.1 Background on Android UI
We discuss the types of UI elements that Android provides, how to display and handle them, how to
identify them, and finally, the main Android app window, Activity. The purpose of this discussion
is an overview of Android UI pertaining to Gesto; it is not meant to be comprehensive.

Types of UI Elements: Android app developers use two main classes to build UI elements —
View and ViewGroup. View is a UI object drawn on a device’s screen. Examples include Button,
ImageButton and others. ViewGroup is a subclass of View but is a special View—it is a container
that holds multiple Views or other ViewGroups. Examples include LinearLayout, ListView and
others. Since a ViewGroup can contain other Views and ViewGroups, they can form a View tree,
where the root is always a ViewGroup.

Table 1 lists popular UI elements on Android in different categories. Other less popular UI
elements, which are often derived as subclasses from elements listed above, are omitted from the
table. For example, ImageButton is a subclass of ImageView and works in a similar fashion. These
elements are all subclasses of View. The current version of Android platform APIs (API 27) has 75
UI element classes in total [21].

Displaying a UI Element: To make UI elements visible on a screen, a developer can either
declare the elements statically using XML files (e.g., layout.xml) or add them dynamically at run
time by writing app code. Declaring a UI element in an XML file is straightforward, and a developer
can do it by just adding the element’s specification in an XML file. In Figure 2, lines 2-4 show an
example.

Alternatively, developers can create Views and add them at run time in their app —a developer
can create a new View object (e.g., a Button), and add it to a ViewGroup (e.g., a LinearLayout)
by calling ViewGroup.addView(). Using this method, a developer can dynamically show different
UI elements depending on app logic. For example, a developer can show a list of nearby restaurants
using this dynamic method.

Handling UI Events: A developer handles UI events via callback methods. In each callback
method, a developer provides app logic that gets invoked when a UI event happens. Android provides
two ways to register a callback method. The first way is through an XML file. Figure 2 lines 2-4
show an example. example method() is declared in the file as a method to handle a click event for
a particular button (line 4). After a callback method is declared and registered this way, a developer
provides app logic that handles the button click (e.g., in lines 7-9) as part of app code. The second
way to register a callback method is to programmatically write callback registration app code. For
this purpose, Android provides pre-defined classes and interfaces that developers can use to register
and implement callback methods. Figure 3 shows an example, where setOnClickListener()

is used on a Button to register a OnClickListener.onClick() callback. As mentioned, these
methods and classes are all defined by Android, and a developer uses or implements them. Table 1
shows some of the callback methods for UI elements defined by Android. They are customized for
different types of UI elements.

Identifying a UI Element: Each View may have an ID to identify a specific View within a
View tree. However, having an ID is not a requirement, and not all developers assign View IDs
in practice. It turns out that this is a challenge that Gesto needs to address as we detail later. A
developer can assign an ID either in an XML file when declaring a UI element, or dynamically
by calling View.setId(). Also, View IDs do not need to be globally unique. It only needs to be
unique within the same View tree.

As mentioned in Section 7, all existing UI object based approaches [5–7, 9, 10, 16] using View

IDs cannot correctly handle cases where the View elements do not have IDs assigned. In order to
understand if this is an actual problem, we have downloaded 324 apps from 34 different categories

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

5:6 Chang Min Park et al.

Category # of Apps # of View Elements Percentage of
ID Assigned ID not Assigned ID not Assigned Views

Library and Demo 17 88 24 21.43%
Art and Design 17 53 13 19.70%

Events 16 47 19 28.79%
Beauty 15 69 21 23.33%
Social 14 18 13 41.94%

Comics 13 74 40 35.09%
Photography 12 72 20 21.74%

Books and Reference 11 49 13 20.97%
Food and Drink 10 42 23 35.38%
Personalization 7 43 21 32.81%

Others(24) 192 563 97 14.70%
Total 324 1118 304 21.38%

Table 2. View ID Percentage for 324 Popular Apps

from Google Play and tested them. We have run the apps for 2 minutes clicking on elements at
random and have logged all performed View elements’ IDs. In order to do this, we use bytecode
instrumentation to inject logging statements for all UI callbacks to each app we test. This way, we
can print out if a UI object has an ID assigned when used. Table 2 shows the number of apps for each
category, the number of visited View elements separated by whether each one was assigned an ID
or not, and the percentage of view elements not assigned an ID for each category as well as across
all apps. The table shows that the overall percentage of views not assigned an ID is 21.38%. This
represents 1 out of 5 Views that cannot be handled by existing UI object based record-and-replay
approaches [5–7, 9, 10, 16]. Also, 111 apps out of total 324 apps contain at least one View which
is not assigned an ID. Therefore, UI object based record-and-replay tools are not able to replay
these apps correctly. We note that our testing approach does not explore all possible paths to use
UI objects since it is a random testing. Thus, our results are conservative, i.e., there could be more
Views without an ID in reality. In Section 3.4, we describe in detail our solution to this challenge.

Activity: An Activity on Android is a UI window object that contains Views. On a mobile
device, it is typically presented as a full window, but smaller window sizes are possible. A typical
app creates multiple UI window objects; for example, a chatting app can have a login Activity,
a contact list Activity, and a chatting conversation Activity. In order to define an Activity

and its behavior, an app developer needs to write a subclass of the Android’s base Activity class.
This base Activity class has multiple pre-defined callbacks such as onCreate(), onStart(),
onResume() and others that are invoked according to the lifecycle of the app. Developers can
override these callbacks to customize an app’s behavior during those lifecycle events.

3.2 Gesto Design Overview
We now present the design of Gesto from a high-level viewpoint. Unfortunately, discussing a UI

record-and-replay approach requires platform-specific details, since each platform has its own way
of handling UIs and there are distinctive features one can leverage from different platforms. Due to
this reason, we only give a brief overview of our design here and delve deeper into the design with
Android-specific details in the rest of this section.

Gesto consists of the following four mechanisms.
• Capturing UI events: Gesto instruments an app so that it can capture UI events at run time.

The instrumentation injects logging code into UI event callback methods, which is sufficient for
capturing UI events. More details can be found in Section 3.3.

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

Gesto: Mapping UI Events to Gestures and Voice Commands 5:7

1 void onClick(View v) {

2 Logger.logOnClick(v);

3 // Original Developer Code

4 }

5
6 void onItemClick(AdapterView parent,

7 View view, int position, long id) {

8 Logger.logOnItemClick(

9 AdapterView parent, View view,

10 int position, long id);

11 // Original Developer Code

12 }

13

1 void onFocusChange(View v, boolean hasFocus){

2 Logger.logOnFocusChange(

3 View v, boolean hasFocus);

4 // Original Developer Code

5 }

6
7 void onTextChanged(CharSequence s,

8 int start, int count, int after){

9 Logger.onTextChanged(

10 CharSequence s, int start,

11 int count, int after);

12 // Original Developer Code

13 }

Fig. 4. Logging UI Callback Examples

• Recording UI events: Starting from the main (first) activity of an app, Gesto records four types
of information: (i) the activity where an UI event occurs, (ii) the name of a UI event callback
method, (iii) the unique ID of a UI element, and (iv) the timestamp of a UI event. More details are
in Section 3.4.

• Mapping UI events: Gesto stores a sequence of UI events along with a selected gesture or voice
command. More details can be found in Section 3.5.

• Replaying: Gesto starts replaying from the main (first) activity, and it performs recorded UI
actions using the information previously stored. We discuss more details in Section 3.5.

3.3 Capturing UI Events
Capturing UI events is the first component necessary for recording UI events. The basic mechanism
that we use is injecting logging code into UI event callback methods via bytecode instrumentation.
This way, as long as we identify all callbacks, we can reliably capture UI events.

Care must be taken when identifying callbacks because there are two ways to define callbacks—
declaratively in a XML file and programmatically in app code. The difference is that when a
developer declares a callback for handling a UI event in the XML file, the developer can use a custom
name. However, when a developer programmatically registers a callback in app code, the developer
needs to implement a known method defined by Android. To identify all custom callbacks declared
in UI XML files, we parse the UI XML files and get the list of UI elements and their custom callbacks.
To identify callbacks registered in app code, we statically analyze app bytecode and look for known
callback names defined by Android.

Once we identify the UI event callbacks in an app, we inject logging code as the first line of
each callback method. Figure 4 shows some examples of our code injection. 1 The first example,
onClick(), is perhaps the most popular way to handle a click event for many different types
of user-interactive Views, such as ButtonView, ImageView, TextView, etc. The second example,
onItemClick, is also popular and used for ListView that shows a list of clickable items. The
third and fourth examples, onFocusChange() and onTextChanged() are used to handle text
input via EditText. EditText is a text field UI object for entering text. When it receives focus,
onFocusChange() is called. Then, onTextChanged() is called every time text is entered or deleted.
As shown in all four examples, our logging code passes all parameters as well, since they are
necessary for replay later.

Our current prototype provides support for 6 UI elements, TextView, ImageView, ListView,
Button, ImageButton, and EditText. In Section 5.2, we show our coverage analysis with these 6
elements, i.e., we analyze what percentage of UI element uses we can cover with the 6 elements.
Our result shows that we can cover 96.4% of all statically-declared UI element uses in 1,000 Google
Play apps.
1We show Java code for illustration purposes; we do not need source code to inject our code.

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

5:8 Chang Min Park et al.

3.4 Recording UI Events
With the capturing mechanism described above, we record UI events for replay later. Our recording
always starts from the first Activity of an app; when a user starts recording (via a pre-defined
gesture), we revert to the main (first) Activity of the app and let the user perform UI actions to
be recorded. We discuss the implementation details of this in Section 3.6.

There are four types of information we record for each UI event—(i) the Activity object on
which the UI event is performed, (ii) the callback method that handles the UI event, (iii) the UI
object information (e.g., its ID), and (iv) the timestamp of the event. We store all four types of
information in permanent storage for later retrieval. We discuss each type in detail below.

Activity: As mentioned earlier, An Activity on Android is a UI window object that contains
Views. We record the Activity for each UI event for two reasons. One reason is our debugging,
since we find it helpful to know how Activity transitions are happening during record and replay.
The other is a more practical one, that transitioning from one Activity to another takes a variable
amount of time, which makes it difficult to replay recorded UI actions correctly. For example, if
an Activity transition takes longer during replay than recording, then there is a chance that
we perform a UI action before the new Activity is completely drawn. In order to avoid this, we
first record each Activity, and also record a relative timestamp for the UI event, i.e., the duration
between when an Activity is completely drawn and when the UI event is performed. We discuss
in Section 3.6 how we detect when an Activity is completely drawn in our implementation.

Callback: We record the callback method that is invoked for a UI event. This information
identifies which UI action is performed, e.g., a click, a selection, etc. We use this information to
perform that action during replay.

UI Object Information: We record the information of the UI object on which a UI action is
performed. For all UI objects, we record IDs. In addition, we record other necessary information
depending on UI object types. For example, Gesto records the text in a EditText element and the
row that was clicked in ListView. All this additional information is used for replay.

A major challenge in identifying UI elements was unique IDs. As mentioned earlier, assigning
an ID to a UI element is not a requirement, and many developers do not assign IDs for their UI
elements. However, in order to identify a UI object and correctly record and replay, we need to
have a unique ID for each UI object. Thus, we have developed a mechanism to assign an ID for a UI
object ourselves when the original developer does not assign an ID to it. Since there are two ways
to register a UI element (i.e., in a UI XML file and in app code), we need to handle both cases. It
is not difficult to assign an ID to a UI element declared in a UI XML file; we just need to parse all
XML files, find out if there is any UI element that has no ID, and assign an ID using the correct
XML attribute.

However, UI objects added at run time via an addView() call are more challenging. This is
because there are two constraints. The first constraint is that an ID assignment mechanism needs to
be deterministic across different runs. If IDs that we assign do not survive across app terminations
and restarts, then we cannot record and replay correctly. The second constraint is that Android
requires that an ID for a UI object be unique within a single View tree.

We considered various properties that a UI object has as ID candidates. For example, we considered
using a hash of a UI object’s pixel coordinates as an ID. However, there are cases where two different
UI objects are drawn on the same position within a single View tree (e.g., clicking a button turns
into another button). In these cases, we cannot use pixel coordinates as an ID as they are not
unique. We also considered a UI object’s Java hash (Object.hashCode()) as an ID. However, we
discovered that a Java hash is a run-time value, and changes across different runs.

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

Gesto: Mapping UI Events to Gestures and Voice Commands 5:9

Fig. 5. Record Log of Spotify App

Fig. 6. Replay Log of Spotify App

Based on these experiences, we have developed the following mechanism. We first assign all
IDs for static UI elements declared in UI XML files. We then pick a number that is greater than all
IDs used in the UI XML files. We use this number as the base number for all dynamically-added UI
objects.

Whenever a new UI object is added (via addView()) without an ID, we increment the base
number by one and assign it as the ID for the newly-created object. On Android, there is a single
View tree per Activity, so this mechanism creates a unique ID for each UI object in a View tree.
Also, since we retrieve the base number every time an Activity transition happens, we effectively
reset the ID counter for a new Activity. This way, our IDs do not increase arbitrarily, and we can
avoid potential conflicts with static IDs due to overflow.

This mechanism relies on an assumption that all dynamically-added UI objects are created in
the same order across different runs. If this assumption does not hold for an app, then we cannot
correctly record and replay. Our experience with real apps downloaded from Google Play indicates
that this assumption holds for real apps that we use for our use case studies (in Section 4). For
example, Figure 5, 6 compares a record run of Spotify to a replay run. Both logs show the order of
UI object creations for each run, and they are identical (indicated in blue). As a result, we assign
the same IDs across two runs. The red arrow shows that one of the dynamically-created buttons
has been clicked and recorded correctly. In Section 6, we further discuss the implications of this
mechanism.

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

5:10 Chang Min Park et al.

Using Sensor/Services Features
Base Sensor(Accelerometer, Proximity, etc.) Shake, Chop, Wave, Flip, and 14 more

Touch Gesture Tap, Swipe, LongPress, and 7 more
SpeechRecognizer(Platform Class) Dynamic Voice Recognition

Table 3. Mappable Features Provided by Gesto

Original
App

Instrumented
App

Injection

Modification

Logger Class

WrapperActivity Class

Gesture Listeners

Assign View IDs XML

Fig. 7. Overview of Gesto Implementation

Activity

MainActivity

WrapperActivity

- Record & Replay
- Register Gestures
- Enable Speech Recognizer

Platform

Activity

MainActivity

App

Fig. 8. WrapperActivity Class

Timestamp: The last piece of information we record is a timestamp for each UI event. As
mentioned earlier, this timestamp is relative to each Activity transition completion time. We
record the duration between a new Activity completing rendering and when a UI event is
performed. Then, Gesto uses it to trigger each UI event at the exact time when replaying. Some UI
events require time to load (e.g., waiting for data over the Internet), and the app may either crash or
misbehave if it triggers next UI events during the loading. A timestamp is important to prevent this
potential problem, and it also gives users the necessary control of when UI actions should occur.

3.5 Mapping UI Events and Replaying
As mentioned in Section 2, recording a sequence of UI actions starts with a pre-registered gesture
which signals the start of a recording. After that, a user performs a gesture or speaks a voice
command that will be used as the trigger for replaying. Then, the user performs UI actions to be
automated and ends the recording with another pre-registered gesture. While the user performs
the UI actions, Gesto stores the sequence of the UI actions with the name of a selected gesture
or a voice command. This process is essentially storing a mapping, and our system reads and
follows the sequence when replaying. Table 3 shows the list of gestures and voice commands Gesto
currently supports. We use Sensey [46], an open-source gesture recognition library. We also use
SpeechRecognizer that Android provides, which allows custom voice commands to be recorded
and used. We detail how we inject this code in Section 3.6.

When a user starts replaying, Gesto always goes back to the first Activity of the app. Since
our recording always starts from the first Activity, we replay a UI sequence from the same first
Activity. For each event, we wait until an Activity is completely drawn and perform the event
based on the timestamp recorded. When performing the event, we call the appropriate method based
on the callback type recorded. For example, for a onClick() callback, we use performClick();
for a onItemClick() callback, we use performItemClick(); for a onFocusChange() callback,
we use setFocusable() callback.

3.6 Implementation
Gesto uses Soot [47] to inject custom classes and rewriting bytecode, and apktool [2] for re-
building apps with the injected classes and rewritten bytecode. Figure 7 shows an overview of
Gesto implementation. Gesto modifies all UI XML files to assign UI object IDs, and injects three
components—Logger class, multiple gesture listeners, and WrapperActivity class. Logger has

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

Gesto: Mapping UI Events to Gestures and Voice Commands 5:11

all the methods for capturing UI events (Section 3.3) and recording them (Section 3.4). Our gesture
and voice listeners use Sensey [46] and Android’s SpeechRecognizer to detect gestures and voice
(Section 3.5).
WrapperActivity is a class we inject between Android’s base Activity class and each of the

custom Activity classes of an app. As mentioned earlier, an app developer needs to extend An-
droid’s base Activity class and write a custom Activity class (e.g., MainActivity) to customize
the behavior of an Activity (e.g., showing a login page). Figure 8 shows our injection.

There are two reasons for this injection. First, it allows us to monitor which state an app is
in. As mentioned earlier, Android invokes Activity callbacks to signal app’s state transitions—
onCreate() when an Activity is first created, onStart() when the Activity is starting, onRe-
sume() when the Activity is completely drawn and ready to handle user interactions, etc. If we
inject WrapperActivity between the base Activity and an app Activity, we can override all
callbacks and monitor these state transitions. We mainly override onResume() since it signals that
an app’s Activity is completely drawn and ready to handle user interactions. Using onResume(),
we mark the app state to be “ready” for either record or replay.

The second reason is that Android requires UI interaction capabilities (e.g., gestures and voice)
to be registered for each Activity that an app creates. In other words, Android requires that a
developer define all UI interactions per Activity. Once again, WrapperActivity allows us to
tap into each app Activity, and we register our gesture and voice recognition capabilities using
WrapperActivity for each Activity created. WrapperActivity also triggers an app to go back
to the first Activity whenever a recording run or a replaying run starts. This is done by starting
an app’s main Activity (called the launcher Activity).

4 USE CASES
We demonstrate the usability of Gesto by describing four use cases. These examples are meant to
be representative of Gesto’s capabilities.

4.1 Simplifying UI Interaction
There are several circumstances under which users cannot interact with the UI on mobile devices,
e.g., when exercising, on a rainy day, and when wearing gloves. Further, disabled people have
difficulties in interacting with the UIs of mobile devices. Many approaches attempt to solve this
problem; for example, there are touchable gloves and earphones with additional functions for
control. However, these approaches require users to purchase additional products, and even when
users purchase them, the mileage may vary in their utility. Gesto can solve this problem without
additional hardware by instrumenting individual apps.

Consider Spotify music player app as an example. A music player app is typically used to provide
background music while a user performs other tasks. Thus, there is a high probability that users
are occupied (such as when running or driving) and unable to interact with the app via the UIs of
their mobile devices. Although today’s earphones come with extra functionalty for play, stop, and
volume control, they are limited in many ways. The provided functions are set statically which
means users cannot change their mapping or define custom mappings to other actions in an app.
Further, they can enable just one action and not a complete sequence. Gesto’s instrumentation
enables both dynamic mapping and mapping multiple UI actions with single gesture or word.

Figure 9 shows how a user can leverage Spotify instrumented by Gesto. In fact, it is a real
screenshot of Spotify after we instrument it with Gesto. We have mapped a shake gesture to a
sequence of two UI actions that plays one of the playlists that user have created. There are two logs
in Figure 9. First, the recording log shows recorded activities, recorded UI actions with their view
ID, information which is used in replay, and time intervals between each UI action. Second, the

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

5:12 Chang Min Park et al.

(b) Log of Recording

(c) Log of Replaying(a) Activities of Spotify App

AdapterView ID Position #MainActivity MainActivity (Different Fragment)

View ID

Row # Time Gap

Fig. 9. Record and Replay of Spotify App

ActivityHome ActivityNearby SearchBusinessesByList

(b) Log of Recording(a) A Sequence of Multiple UI Actions

2 more
Activities

Fig. 10. Record of Yelp App

replay log shows that those recorded activities and UI actions are replayed in order. Gesto allows
us to use other gestures/voice commands to play other playlists as well. Finally, users are able to
perform such mappings dynamically at run time and have these mappings persist across reboots.

4.2 Executing Long Sequence of UI Actions
As a second example, consider the fact that today’s applications are content-rich with an involved,
hierarchical UI. While this makes for more compelling applications, navigating to an element of
interest requires executing a long sequence of UI actions. Some apps provide a bookmark feature
which helps users to get to desired content that has been visited before. However, such bookmarks
are limited to static content. Gesto allows a user to define a dynamic mapping to a sequence of UI
events.

We have chosen Yelp to demonstrate this use case. Yelp provides information about local busi-
nesses along with customer reviews for these businesses. Users typically use Yelp to find a local
restaurant or find the best-rated local coffee shop. However, accomplishing such a task requires
navigating through the app and performing several UI actions, which can quickly get involved.
With Gesto, a user can easily automate the task.

To demonstrate this, we have instrumented Yelp using Gesto and performed a search for a
masseur. Figure 10 shows a sequence of UI events mapped to the face down gesture. Figure 10 (b)
shows the recorded log of actions. Figure 10 demonstrates an example of executing a sequence of
four UI events through five activities using the face down gesture. We note that such a sequence

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

Gesto: Mapping UI Events to Gestures and Voice Commands 5:13

MainActivity AutoSuggestActivity ResultActivity

(a) Activities of Bing

MainActivity

(b) Log of Recording

Voice Recognized

Fig. 11. Record of Bing App

could be arbitrarily complicated (within memory limits), and therefore offers the potential to
significantly reduce cumbersome UI actions.

4.3 Frequently Used UI Events
The third use case demonstrates simplification of frequently used UI events. A user may repeat a set
of UI events periodically (potentially many times a day) which could be annoying to the user. Such
interaction gets worse if it involves the user entering text into a text box given the ergonomics of
the mobile keyboard. Gesto can be used to automate these cases replacing such a sequence with a
gesture/voice.

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

5:14 Chang Min Park et al.

(a) Task 1. Cleaning Cache (b) Task 2. Cleaning History

CleanerHomeActivity CacheAppsActivity CleanerHomeActivity CleanerHomeActivity CleanerHomeActivityHistoryAppsActivity

Fig. 12. Multiple Task of AVG Cleaner App

We use the Bing app to demonstrate this use case. Bing is search app from Microsoft that provides
a wide variety of search services. Users can search the same keyword at different times to check
the latest results such as news on a specific topic, stock price and currency conversion. Shown
in Figure 11, we have recorded searching the Bitcoin price with a word “Bitcoin” on Bing app.
Figure 11 (a) shows voice recording dialogue at the very first activity. Using a unique gesture
(two-finger tap in our case), users can get to voice recording dialogue. Recording starts right after
a word is entered by users. The log in Figure 11 (b) shows Gesto’s ability to handle text boxes
(EditText). It captures all text changes and saves each change. In the current example, uttering
the voice command “Bitcoin” replays the UI sequence resulting in display of the latest Bitcoin price.

4.4 Performing Multiple Tasks
Since Gesto automates a sequence of UI actions, it allows the user to traverse back to previously
visited UI elements and visit other UI elements. Users can record sequences that move forward
and backward in an app’s activity hierarchy. We highlight this feature because it is beyond the
capabilities of previous approaches related to deep links [16, 34].

We demonstrate this feature with AVG Cleaner app [37]. AVG Cleaner is a memory optimizer
which cleans the cache, the app history, and the call and message history on a mobile device. Users
typically perform several tasks at the same time. As shown on Figure 12, we have recorded two
different tasks together—cleaning the cache and cleaning the app history. Figure 12 (a) shows the
first task of cleaning the cache. On completion, it goes back to the previous activity and starts to
perform another task of cleaning the app history as shown in Figure 12 (b). In our recording, we
give ample time during recording for the first task to complete, before continuing to the recording
of the second task. This is to accommodate potential delays in executing the first task during future
replays. Note that reasoning about time to completion of app tasks is beyond the scope of Gesto as
it might require understanding the logic of an app.

5 EVALUATION
In this section, we characterize the overhead of Gesto. To demonstrate the feasibility and practicality
of our design, we use 1,000 apps randomly picked from a dataset containing top 100 popular apps
from each category in Google Play.

We use LG Nexus 5 running Android 6.0.1 (2GB RAM) for our experiments and Samsung Galaxy
S4 (2GB RAM) running Android 7.1.2 with a Monsoon Power Monitor for power measurement. LG
Nexus 5 is not suitable to measure energy overhead with a Monsoon Power Monitor because it is a
device with a non-removable battery. For our app instrumentation, we run Gesto on a desktop PC

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

Gesto: Mapping UI Events to Gestures and Voice Commands 5:15

Spotify Yelp Bing AVG Cleaner
0

10

20

30

40

50

A
ve

ra
ge

Ti
m

e
of

U
IE

ve
nt

s
(s

)

Original App
Inst. App (Record)
Inst. App (Replay)

Fig. 13. Latency of Use Case Apps

App Name Average (J) Std Dev (J)
Spotify 68.9 5.2
Spotify* (Record) 75.0 5.5
Spotify* (Replay) 78.5 4.8

Yelp 55.5 5.1
Yelp* (Record) 67.8 4.9
Yelp* (Replay) 64.9 5.1

Bing 75.9 4.3
Bing* (Record) 86.1 6.3
Bing* (Replay) 86.9 6.3

AVG Cleaner 56.5 4.7
AVG Cleaner* (Record) 66.0 3.9
AVG Cleaner* (Replay) 63.2 2.4

Table 4. Energy Consumption (*Instrumented apps)

0 10 20 30 40 50 60
0

10
20
30
40
50
60

To
ta

lH
ea

p
Si

ze
(M

B
)

Gesture

Spotify
Spotify* (Record)
Spotify* (Replay)

0 10 20 30 40 50 60
0

10

20

30

40

Gesture

Yelp
Yelp* (Record)
Yelp* (Replay)

0 10 20 30 40 50 60
0

20

40

60

80
Voice

Bing
Bing* (Record)
Bing* (Replay)

0 10 20 30 40 50 60
0

10
20
30
40
50
60

Gesture

AVG Cleaner
AVG Cleaner* (Record)
AVG Cleaner* (Replay)

Fig. 14. Heap Usage (*Instrumented apps): The x-axis shows elapsed time in seconds.

with a 3.10 GHz Intel Core i5-2400 CPU, 16GB of RAM, and a single 7200 RPM hard disk. We have
measured all our instrumentation-time overhead in this setting.

5.1 Use Case Evaluation
Latency Overhead: Since our approach injects additional code as well as wrappers for several
classes, it is important to understand how much latency overhead this augmentation incurs. To
evaluate the latency overhead, we have measured the previously described use case apps in three
contexts—(1) regular UI events on the original app, (2) recording on an instrumented app, and (3)
replaying on an instrumented app. For all three tests, we have set the same number of UI events
and same time gaps between each UI event. We have tested each sequence 10 times except when
recording which needs to be set only once.

Figure 13 shows the average time for UI events. The three contexts for each of the use cases are
very comparable. Recording on instrumented app has overhead about 3-8 seconds in comparison to
the original app as it requires a gesture to signal the start and end of the recording. This is external
to any latency introduced by our instrumentation. The key comparison is between the original
use and a replay. Even between these contexts, the overhead during replay includes the latency
to execute the gesture that signals replay. Excluding this gesture, the overhead is far less than 1
second which could be considered negligible.

Heap Usage Overhead: To demonstrate practicality of Gesto, we have measured the heap usage
of use case apps under the exact same scenarios. Figure 14 shows the heap usage over time. We
use Android’s adb tool to record heap allocation sizes every 0.3s and run each app for 60s. From
Figure 14, heap usage graphs for all four apps show that there is no significant difference between
the heap usage of the original app in comparison to record and replay events on an instrumented

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

5:16 Chang Min Park et al.

app. Only noticeable difference on the four graphs is when gesture or voice is detected for record
and replay. This results in a brief 5-15% increase in heap usage but it returns to heap usage of the
original app in seconds. We believe that this overhead is well within acceptable memory limits on
most modern mobile devices.

Energy Consumption Overhead: Since energy is a scarce resource on mobile devices, we
characterize the energy overhead of our approach. We run the four apps for one minute ten times
and measured energy consumption with a Monsoon Power Monitor. During the measurement, we
used the same workload as mentioned in Section 4. Table 4 shows the average and standard deviation
of energy consumed across those runs. In the worst case, Gesto incurs 16.9% energy overhead. We
attribute this increase to our gesture and voice recognition libraries, which continuously use various
sensors such as proximity, accelerometer, and microphone at a high sampling rate. Energy-efficient
gesture or voice recognition is currently an active topic of research [27, 39, 41, 43]. We conjecture
that the energy consumption of Gesto would be reduced by incorporating some of these techniques.
We hope to incorporate some of these ideas in the future.

5.2 Instrumentation Evaluation
The previous section demonstrates the feasibility of our system by measuring overhead and showing
that they are acceptable. We now show that Gesto has a wide coverage across apps. We do this by
evaluating (1) what percentage of UI element uses we can cover, and (2) what percentage of apps
we can instrument successfully.

Android apps create UI elements either statically from layout XML files or dynamically at run
time. Accordingly, Gesto can correctly record and replay both statically-declared and dynamic-
created UI elements. However, as mentioned in Section 3.3, the current prototype of Gesto supports
6 main UI elements (EditText, TextView, ListView, Button, ImageView, and ImageButton),
i.e., it does not support all UI elements. Thus, we measure what percentage of UI element uses we
can cover with the 6 elements.

In doing so, we only consider statically-declared UI elements, not dynamically-created elements.
This is because a large number of dynamically created UI elements are nested, and it is non-trivial
to determine which of the nested UI elements truly interact with users. Thus, we have downloaded
1,000 popular apps from Google play and analyzed all layout XML files to see which UI elements
each app statically creates and uses.

Our analysys shows that there are 259,930 statically-declared UI elements from 955 apps, and
we cover 250,492 (96.4%) of them. Table 5 shows UI elements sorted by the frequency of use.
Gesto supports top 5 (and another from a lower rank). Figure 15 shows that Gesto covers most
statically-declared UI elements that each app uses; Gesto perfectly handles all of statically-declared
UI elements for 238 apps. Since we cut x-axis below 70%, there are five missing apps (each one at
33%, 42%, 50%, 59%, and 63% respectively). We note that we have removed 45 apps from the results
since they did not have layout files.

To evaluate the capability of Gesto instrumentation, we have instrumented the same 1,000 apps.
Gesto could instrument 949 apps out of 1,000. Among 51 apps that Gesto could not instrument, the
baseline instrumentation tools we leverage (i.e., apktool, Soot) could not process 27 apps. Gesto
could not process the remaining 24 apps.

Table 6 shows our instrumentation overhead results. We have re-categorized 949 apps into eight
categories based on Google’s categorization to concisely present our results. Our results show
average, maximum, and minimum values for instrumentation times, original APK sizes, APK size
increase after instrumentation, original lines of code (LoC), and LoC increase after instrumentation.

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

Gesto: Mapping UI Events to Gestures and Voice Commands 5:17

UI Element Percent Use Support
TextView 52.8 ✔

ImageView 29.7 ✔

Button 8.1 ✔

ImageButton 3.0 ✔

EditText 2.8 ✔

CheckBox 1.0
RadioButton 0.8

Others 1.8
(e.g., Spinner, SeekBar)

Table 5. UI Element Usage

70 75 80 85 90 95 100
Covered UI Elements (%)

0

50

100

150

200

250

#
of

A
pp

s

Fig. 15. Histogram of UI element coverage by
Gesto. Only 11 of the 955 apps analyzed have
fewer than 80% of UI elements covered.

Category
(Example)

of Apps Inst. Time Avg.
(Min./Max.)

APK Size Avg.
(Min./Max.)

APK Size
Increase Avg.

LoC Avg.
(Min./Max.)

LoC Increase Avg.
(Min./Max.)

(Min./Max.) XML Jimple* XML Jimple*
Game

(Color Switch)
95 32.7s

(3.7s/60.8s)
12.7M

(332.2K/44.4M)
558.8K

(5.0K/12.9M)
14.6K

(73/54.6K)
442.0K

(6.2/792.4K)
640

(0/3.6K)
1.4K

(1.3/1.8K)
Entertainment

(Roku)
129 34.1s

(3.3s/64.7s)
10.5M

(174.5K/44.9M)
437.4K

(11.1K/1.3M)
15.4K

(71/113.2K)
459.0K

(8.7/813.4K)
621

(-261/3.6K)
1.4K

(1.3/1.8K)
Media

(Spotify Music)
132 28.7s

(2.1s/65.1s)
9.9M

(13.7K/36.6M)
408.4K

(-2.1M/4.6M)
11.1K

(33/41.4K)
380.1K

(18/734.7K)
398

(0/2.4K)
1.4K

(1.3/1.9K)
Education
(Brilliant)

114 33.0s
(5.6s/78.9s)

10.9M
(822.2K/48.4M)

718.0K
(-117.0K/13.7M)

14.9K
(95/79.0K)

440.6K
(27.7/868.8K)

698
(0/5.2K)

1.4K
(1.3/2.7K)

Personalization
(Alarmy)

118 27.7s
(2.5s/98.2s)

8.1M
(695.0K/49.3M)

364.3K
(-72.2K/2.0M)

9.9K
(115/57.2K)

366.7K
(25/772.7K)

382
(0/3.4K)

1.4K
(1.3/1.8K)

Productivity
(Evernote)

116 31.5s
(3.8s/113.8s)

7.7M
(1.1M/41.0M)

647.3K
(-761.3K/19.5M)

19.2K
(62/127.3K)

414.2K
(7.6/831.8K)

707
(0/5.0K)

1.4K
(1.3/1.7K)

Business
(Venmo)

91 33.8s
(2.2s/81.8s)

10.4M
(47.0K/36.5M)

435.8K
(-2.4M/5.2M)

18.2K
(32/103.4K)

436.3K
(168/856.0K)

1013
(-139/5.1K)

1.5K
(1.3/2.3K)

Social
(Yelp)

154 31.9s
(3.4s/90.6s)

10.4M
(207.6K/46.5M)

675.7K
(-1.2M/25.5M)

17.4K
(101/193.0K)

425.1K
(6.3/792.7K)

736
(0/9.6K)

1.4K
(1.3/2.1K)

Total 949 31.6s
(2.1s/113.8s)

10.0M
(13.7K/49.3M)

534.3K
(-2.4M/25.5M)

15.0K
(32/193.0K)

419.5K
(18/868.8K)

638
(-261/9.6K)

1.4K
(1.3/2.7K)

Table 6. Instrumentation Results for 949 Popular Apps (*Jimple LoC is roughly equivalent to Android bytecode
LoC.)

Since Gesto modifies XML files and Android bytecode in Jimple 2, we present the LoC results for
XML and Jimple separately. App instrumentation finished in 2 minutes or less for all apps. The
original APK sizes ranges from 13.7KB to 49.3MB. On average, the APK size increases by 7.2%, the
LoC for XML by 3.5% and the LoC for Jimple by 35.0%. Gesto has a slightly high percentage increase
in average LoC for Jimple. This is because tiny apps in our data set have a far fewer number of LoC
compared to the LoC added by Gesto. However, it is 2.7K LoC in the worst case. Interestingly, we
have noticed that Gesto has even reduced the size of an app after instrumentation—this is because
we use apktool [2] that provides better compression and optimization for some of the apps. sizes
(Blue Bible-Productivity, Jet Blue-Social) have been increased by 19.5MB and 25.5MB for each, but
this is because of apktool’s compression. Size increases just for apktool are 19.1MB and 24.9MB for
these two apps. Excluding the app size increase by apktool, Gesto increases the app size modestly
by about 0.5 MB.

6 DISCUSSION AND FUTUREWORK
Cross-app Automation: Gesto currently records and replays UI events within an app but does not
support cross-app automation. That requires handling Android’s messaging mechanism (Intent)
across different apps. We could potentially instrument Intents to pass around recording and
replaying information, which we leave as future work.
2Jimple is the primary intermediate representation of Soot [47].

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

5:18 Chang Min Park et al.

Similarly, Gesto currently does not support apps that use WebView, an Android system library
that displays web pages. WebView essentially works as if it were a different app; and because of
that reason, we cannot record and replay WebView events.

Limited UI Events Handled In Gesto: As mentioned in Section 3.3, our current prototype
of Gesto handles six UI elements, TextView, ImageView, ListView, Button, ImageButton, and
EditText. According to our analysis of statically-declared UI elements from 1,000 apps (in Sec-
tion 5.2), these UI elements cover 96.4% of all statically-declared UI elements used in those apps.
While Android API lists several more elements, we believe that the current Gesto framework can
perform reasonably with this coverage. Supporting more UI elements is a matter of engineering
using the same mechanism that we use now.

Dynamic UI Object ID Assignment: Section 3.4 discusses our ID assignment mechanism
where the assumption is that when an app populates an Activity with UI objects, it always adds
dynamic UI objects in the same order. Based on our experience with real apps downloaded from
Google Play, this seems to be a reasonable assumption to make since UI objects, even when they
are dynamically-added, need to show a consistent look and feel to users. This implies that app code
that adds dynamic UI objects needs to be deterministic across different runs. In the future, we will
quantify the effect of this assumption on a larger set of apps.

API Version Sensitivity: Since we capture UI events at each callback, if new Android API
versions add or change the callbacks, our approach needs to know the additions or changes in order
to handle them correctly. However, we believe that this can be automated to a large extent; since all
UI element classes are subclasses of View, we could detect any addition or change by monitoring
the API documentation.

Scalability of Gestures: Gesto currently provides 21 gestures and voice recognition features
using Sensey [46] and Android’s SpeechRecognizer. Since we are leveraging third-party libraries,
as they get better, we can incorporate new capabilities.

Change in UI Object Ordering: After recording UI events, several factors can change the order
of UI objects. For example, sensor input such as current location can affect the order of UI objects,
e.g., a list of nearby restaurants. Also, some user actions (e.g., updating a music playlist) may
change the order of UI objects. These changes will affect the correctness of replaying previously
recorded UI events. However, this is a general problem that most of the UI record-and-replay
systems suffer, including Gesto. In order to address this, a UI record-and-replay system needs to
record non-deterministic input (e.g., the current location), potentially continuously (e.g., to record
all prior user input), which Gesto does not implement at this time. In practice, we believe that we
can communicate this limitation to users, so that they are aware of it when using Gesto.

Supporting a Server for Instrumentation Service: Currently, app developers or users can
instrument an app by downloading and using Gesto. In the future, we plan to support instrumenta-
tion through a server. This would have two parts—a server that runs Gesto and an app that runs on
a smartphone or a tablet of a user that communicates with the server to instrument an app. This
way, our app would even be able to track app updates and automatically re-instrument updated
apps—the app could monitor installed apps on Google Play and whenever an installed app has a
new version, it could automatically contact the server to re-instrument the updated app.

7 RELATEDWORK
In this section, we compare previous work related to Gesto in three categories.

7.1 Gesture Detection and Voice Recognition
Gesture and voice recognition have been used for a wide range of applications in mobile systems [32,
39, 44] including mobile devices to imitate a mouse in the air [49], to write on surface or in the

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

Gesto: Mapping UI Events to Gestures and Voice Commands 5:19

Name UI Object Based View ID Insensitive Timing Sensitive State-agnostic Nonintrusive
Gesto ✔ ✔ ✔ ✔ ✔

appetizer [3] ✔ ✔ ✔
Bot-bot [4] ✔ Partial ✔ ✔
Culebra [5] ✔ ✔
Espresso [6] ✔ ✔ Source Code
MobiPlay [40] ✔ ✔ ? Custom OS
monkeyrunner [8] ✔ ✔
Mosaic [24] ✔ ✔ Root Access
Ranorex [9] ✔ ✔ ✔
RERAN [20] ✔ ✔ Root Access
Robotium [10] ✔ ✔ ✔ ✔
Valera [25] ✔ ✔ ✔ Custom OS,

Root Access
SUGILITE [31] ✔ Root Access
Frep [7] ✔ ✔ Root Access

Table 7. Comparison Table of Record and Replay Tools for Android [29]. “?” indicates unable to verify this
characteristic.

air [11, 48], to share files between multiple devices [17], and even to detect smoking gestures to
help users quit smoking [38]. Gesto uses gesture detection and voice recognition to trigger record
and replay of UI actions integrating Sensey [46] library into Gesto and Android Speech Recognition
service [33] for voice.

7.2 Deep Links
Deep links are special types of links that point to any UI location within an app or website [42].
Aladdin [34] presents a tool that can be used to generate app’s APK file with deep links feature
enabled. uLink [16] proposes a mechanism to create deep links in mobile apps. Analyzing depen-
dencies between UI elements, a link (deep link) can be provided to navigate to that UI location at a
later stage akin to hyperlinks.

Most closely related is uLink, but its techniques have differences and limitations if they are used
to provide task automation. A deep link created using uLink can only handle a single task and
replay only the shortcut to the target UI location, not the exact sequence that has been recorded.
In Gesto, instead of creating deep links which requires tracking dependencies, we dynamically
map a sequence of intercepted UI events to specific gesture/voice which can enable replaying the
exact sequence at a later time. Further, Gesto allows users to combine multiple tasks in a single
record and replay instance. In addition, uLink implements a record-and-replay mechanism similar
to Gesto. However, it requires every UI object to have an ID, which does not always happen in
real-world apps. Section 3.1 explains this challenge in detail along with how Gesto solves this issue.

7.3 Record and Replay
Record-and-replay has been studied in various platforms. For instance, Improv [18] and Co-
Scripter [30] enable automation of Web tasks. However, mobile platforms have unique UI charac-
teristics causing different challenges such as handling a lifetime of an activity, the existence of UI
elements in the foreground, and a power consumption. In this section, we mainly compare with UI
automation tools on mobile platforms.

Flinn et al. [19] and Lam et al. [29] discussed several record and replay tools, use cases, and
challenges of using this technique on mobile phones. One particular use case of record and replay,
that is closely related to Gesto, is record and replay of UI actions. Table 7 compares Gesto to existing
UI record-and-replay tools. The table uses the metrics similar to the ones used by Lam et al. [29]
that succinctly capture desired functionality for mobile UI record and reply.

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

5:20 Chang Min Park et al.

Object-Based: There are many tools [3, 8, 20, 24, 25, 40] that record UI events based on coordi-
nates of the events on a device screen. Although it supports WebView events that Gesto can not
(discussed in Section 6), this approach is limited in two ways. First, recorded UI event sequences
cannot be replayed on different devices/orientations due to different screen dimensions. Second, it
cannot handle dynamic UI elements i.e., when the UI element changes its position across runs. For
example, on an image searching app, positions of buttons under an image can change depending
on the displayed image size.

Other tools [4–7, 9, 10, 31] record UI events based on UI objects (e.g., buttons, text fields). This
approach is more robust than coordinates sensitive because it identifies UI elements by their
information, not positions. On Android, each UI element contains much information, but View ID
is the only unique information distinguishable. Bot-bot [4] identifies UI elements only with text of
the UI elements, hence is not reliable. The remaining approaches [5–7, 9, 10, 31] use View IDs to
identify the UI elements but do not work correctly when the UI elements do not have IDs assigned.
Gesto records and replays UI events based on UI objects, and it successfully handles Views with no
IDs.

SUGILITE [31] and Frep [7] use Accessibility Service [1] to enable record and replay for
UI events. Accessibility Service intercepts UI events based on the UI objects. Therefore, this
approach can not handle the UI elements which have not been assigned IDs. Again, detailed dis-
cussion of this shortcoming is in Section 3.1. Also, the service is originally built to assist users
with disabilities, and is now widely used for other purposes due to its ease of use. It allows for
programmatic interception of UI interaction. This may cause significant security issues (e.g., inter-
cepting login information on banking apps). Therefore, Google suggests not to use Accessibility
Service for non-disabled users. Also, users need to allow apps to use Accessibility Service

in the device settings.
State Agnostic: There are many tools [3, 5, 7–9, 20, 24, 31] that can replay only when the device

is in the same state as the state where UI events were recorded. In these tools, users manually need
to put an app in the same state before each reply. Gesto supports replay in any state of an app.

Automatic Timing: Many tools [3, 7, 9, 10, 20, 24, 25, 40] automatically set timing between
recorded events. However, other tools [4–6, 8, 31] require users to manually set the timing between
events, which is tedious and error prone. Gesto supports automatic timing between UI events and
replays each event on exact time.

Noninstrusive: Many tools take an intrusive approach where they require OS modifications [25,
40], rooting [7, 20, 24, 25, 31], or source code [6]. Gesto does not have such requirement.

8 CONCLUSIONS
In this paper, we have presented Gesto, a task automation system for Android apps using gestures
and voice. Gesto enables a user to record a sequence of UI actions for an app, map the sequence to
a gesture or a voice command, and later trigger the sequence with the mapped gesture or voice
command. In doing so, Gesto combines bytecode instrumentation and UI record-and-replay. Gesto’s
bytecode instrumentation enables functionality injection into an existing Android app without app
source code or developer intervention. Gesto’s record-and-replay works at the level of UI objects
rather than pixel positions, making it possible to record once and replay it on different devices.
For this, Gesto analyzes an app’s bytecode, identifies all UI elements, and enables recording and
replaying of all UI interactions. Our experience with four use cases (Spotify, Bing, Yelp, and AVG
Cleaner) shows that Gesto provides functional task automation for real apps with modest overhead.
Our evaluation with 1,000 apps downloaded from Google Play shows that Gesto’s instrumentation
is able to cover a wide range of apps (94.9%). Overall, we show that Gesto provides applicable and
practical task automation using gestures and voice.

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

Gesto: Mapping UI Events to Gestures and Voice Commands 5:21

9 ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable feedback. This work was
supported in part by the generous funding from the National Science Foundation, CNS-1350883
(CAREER) and CNS-1618531.

REFERENCES
[1] Cited May 2018. Accessibility Services. https://developer.android.com/reference/android/accessibilityservice/

AccessibilityService.html.
[2] Cited May 2018. Apktool. https://ibotpeaches.github.io/Apktool/.
[3] Cited May 2018. appetizer-toolkit. https://github.com/appetizerio/appetizer-toolkit.
[4] Cited May 2018. Bot-bot. http://imaginea.github.io/bot-bot/index.html.
[5] Cited May 2018. Culebra. https://github.com/dtmilano/AndroidViewClient/wiki/culebra.
[6] Cited May 2018. Espresso Test Recorder, 2017. https://developer.android.com/studio/test/espresso-test-recorder.html.
[7] Cited May 2018. Frep. http://strai.x0.com/frep/.
[8] Cited May 2018. monkeyrunner. https://developer.android.com/studio/test/monkeyrunner/index.html.
[9] Cited May 2018. Ranorex. http://www.ranorex.com/mobile-automation-testing.html.

[10] Cited May 2018. Robotium Recorder. https://robotium.com/products/robotium-recorder.
[11] Sandip Agrawal, Ionut Constandache, Shravan Gaonkar, Romit Roy Choudhury, Kevin Caves, and Frank DeRuyter. 2011.

Using mobile phones to write in air. In Proceedings of the 9th international conference on Mobile systems, applications,
and services. ACM, 15–28.

[12] Amazon. Cited December 2017. Alexa. https://developer.amazon.com/alexa.
[13] Amazon. Cited December 2017. Alexa SDK. https://developer.amazon.com/alexa-voice-service/sdk.
[14] Apple. Cited December 2017. Siri. https://www.apple.com/ios/siri/.
[15] Apple. Cited December 2017. SiriKit. https://developer.apple.com/sirikit/.
[16] Tanzirul Azim, Oriana Riva, and Suman Nath. 2016. uLink: Enabling User-Defined Deep Linking to App Content. In

Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services (In MobiSys). ACM,
New York, NY, USA. http://dl.acm.org/citation.cfm?id=2906416&CFID=758371532&CFTOKEN=77725750

[17] Ke-Yu Chen, Daniel Ashbrook, Mayank Goel, Sung-Hyuck Lee, and Shwetak Patel. 2015. AirLink: sharing files between
multiple devices using in-air gestures. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing. ACM, 565–569.

[18] Xiang ‘Anthony’ Chen and Yang Li. 2017. Improv: An Input Framework for Improvising Cross-Device Interaction by
Demonstration. ACM Trans. Comput.-Hum. Interact. 24, 2, Article 15 (April 2017), 21 pages. https://doi.org/10.1145/
3057862

[19] Jason Flinn and Z Morley Mao. 2011. Can deterministic replay be an enabling tool for mobile computing?. In Proceedings
of the 12th Workshop on Mobile Computing Systems and Applications. ACM, 84–89.

[20] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. 2013. Reran: Timing-and touch-sensitive record
and replay for android. In Software Engineering (ICSE), 2013 35th International Conference on. IEEE, 72–81.

[21] Google. Cited December 2017. Class android.view.View. https://developer.android.com/reference/android/view/
View.html.

[22] Google. Cited December 2017. Google Assistant. https://assistant.google.com/.
[23] Google. Cited December 2017. Google Assistant SDK. https://developers.google.com/assistant/sdk/.
[24] Matthew Halpern, Yuhao Zhu, Ramesh Peri, and Vijay Janapa Reddi. 2015. Mosaic: cross-platform user-interaction

record and replay for the fragmented android ecosystem. In Performance Analysis of Systems and Software (ISPASS),
2015 IEEE International Symposium on. IEEE, 215–224.

[25] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile yet lightweight record-and-replay for android. In
ACM SIGPLAN Notices, Vol. 50. ACM, 349–366.

[26] Intel. Cited December 2017. Intel Context Sensing SDK | Intel Software. https://software.intel.com/en-us/
context-sensing-sdk.

[27] Bryce Kellogg, Vamsi Talla, and Shyamnath Gollakota. 2014. Bringing Gesture Recognition to All Devices. In Proceedings
of the 11th USENIX Conference on Networked Systems Design and Implementation (NSDI’14). USENIX Association,
Berkeley, CA, USA.

[28] Sven Kratz and Jason Wiese. 2016. GestureSeg: Developing a Gesture Segmentation System Using Gesture Execution
Phase Labeling by Crowd Workers. In Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS ’16). ACM, New York, NY, USA.

[29] Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang, Haibing Zheng, Hui Luo, Peng Yan, Yuetang Deng, and Tao Xie.
2017. Record and replay for Android: are we there yet in industrial cases?. In Proceedings of the 2017 11th Joint Meeting

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

https://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
https://ibotpeaches.github.io/Apktool/
http://strai.x0.com/frep/
https://developer.amazon.com/alexa
https://developer.amazon.com/alexa-voice-service/sdk
https://www.apple.com/ios/siri/
https://developer.apple.com/sirikit/
http://dl.acm.org/citation.cfm?id=2906416&CFID=758371532&CFTOKEN=77725750
https://doi.org/10.1145/3057862
https://doi.org/10.1145/3057862
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.html
https://assistant.google.com/
https://developers.google.com/assistant/sdk/
https://software.intel.com/en-us/context-sensing-sdk
https://software.intel.com/en-us/context-sensing-sdk

5:22 Chang Min Park et al.

on Foundations of Software Engineering. ACM, 854–859.
[30] Tessa Lau, Julian Cerruti, Guillermo Manzato, Mateo Bengualid, Jeffrey P. Bigham, and Jeffrey Nichols. 2010. A

Conversational Interface to Web Automation. In Proceedings of the 23Nd Annual ACM Symposium on User Interface
Software and Technology (UIST ’10). ACM, New York, NY, USA, 229–238. https://doi.org/10.1145/1866029.1866067

[31] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating Multimodal Smartphone Automation by
Demonstration. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM,
New York, NY, USA, 6038–6049.

[32] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. 2009. uWave: Accelerometer-based personalized
gesture recognition and its applications. Pervasive and Mobile Computing 5, 6 (2009), 657–675.

[33] Google LLC and Open Handset Alliance. Cited December 2017. SpeechRecognizer | Android Developers. https:
//developer.android.com/reference/android/speech/SpeechRecognizer.html.

[34] Yun Ma, Xuanzhe Liu, Ziniu Hu, Dian Yang, Gang Huang, Yunxin Liu, and Tao Xie. 2017. Aladdin: automating release
of Android deep links to in-app content. In Proceedings of the 39th International Conference on Software Engineering
Companion. IEEE Press, 139–140.

[35] Microsoft. Cited December 2017. Cortana. https://www.microsoft.com/en-us/windows/cortana.
[36] Microsoft. Cited December 2017. Cortana SDK. https://developer.microsoft.com/en-us/cortana.
[37] AVG Mobile. Cited December 2017. AVG Cleaner. https://play.google.com/store/apps/details?id=com.avg.cleaner&hl=

en.
[38] Abhinav Parate, Meng-Chieh Chiu, Chaniel Chadowitz, Deepak Ganesan, and Evangelos Kalogerakis. 2014. Risq:

Recognizing smoking gestures with inertial sensors on a wristband. In Proceedings of the 12th annual international
conference on Mobile systems, applications, and services. ACM, 149–161.

[39] Taiwoo Park, Jinwon Lee, Inseok Hwang, Chungkuk Yoo, Lama Nachman, and Junehwa Song. 2011. E-gesture: a
collaborative architecture for energy-efficient gesture recognition with hand-worn sensor and mobile devices. In
Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems. ACM, 260–273.

[40] Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li. 2016. MobiPlay: A Remote Execution Based Record-and-replay Tool
for Mobile Applications. In Proceedings of the 38th International Conference on Software Engineering (ICSE ’16). ACM,
New York, NY, USA.

[41] Giuseppe Raffa, Jinwon Lee, and Lama Nachman. 2010. Don’t slow me down: Bringing energy efficiency to continuous
gesture recognition (Wearable Computers (ISWC), 2010 International Symposium). IEEE.

[42] Margaret Rouse. Cited November 2017. What is deep link? http://searchmicroservices.techtarget.com/definition/
deep-link.

[43] Haichen Shen, Aruna Balasubramanian, Anthony LaMarca, and David Wetherall. 2015. Enhancing Mobile Apps to Use
Sensor Hubs Without Programmer Effort. In Proceedings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (UbiComp ’15). ACM, New York, NY, USA.

[44] Sheng Shen, He Wang, and Romit Roy Choudhury. 2016. I am a Smartwatch and I can Track my User’s Arm. In
Proceedings of the 14th annual international conference on Mobile systems, applications, and services. ACM, 85–96.

[45] Lucio Davide Spano, Antonio Cisternino, Fabio Paternò, and Gianni Fenu. 2013. GestIT: A Declarative and Com-
positional Framework for Multiplatform Gesture Definition. In Proceedings of the 5th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS ’13). ACM, New York, NY, USA.

[46] Nishant Srivastava. 2016. GitHub - nisrulz/sensey: [Android Library] Play with sensor events & detect gestures in a
snap. https://github.com/nisrulz/sensey.

[47] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. 1999. Soot - a
Java bytecode Optimization Framework. In Proceedings of the 1999 Conference of the Centre for Advanced Studies on
Collaborative Research (CASCON ’99).

[48] Chao Xu, Parth H Pathak, and Prasant Mohapatra. [n. d.]. Finger-writing with smartwatch: A case for finger and hand
gesture recognition using smartwatch. In Proceedings of the 16th International Workshop on Mobile Computing Systems
and Applications. ACM, 9–14.

[49] Sangki Yun, Yi-Chao Chen, and Lili Qiu. 2015. Turning a mobile device into a mouse in the air. In Proceedings of the
13th Annual International Conference on Mobile Systems, Applications, and Services. ACM, 15–29.

Received October 2018; revised December 2018; accepted February 2019

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. EICS, Article 5. Publication date: June 2019.

https://doi.org/10.1145/1866029.1866067
https://developer.android.com/reference/android/speech/SpeechRecognizer.html
https://developer.android.com/reference/android/speech/SpeechRecognizer.html
https://www.microsoft.com/en-us/windows/cortana
https://developer.microsoft.com/en-us/cortana
https://play.google.com/store/apps/details?id=com.avg.cleaner&hl=en
https://play.google.com/store/apps/details?id=com.avg.cleaner&hl=en
http://searchmicroservices.techtarget.com/definition/deep-link
http://searchmicroservices.techtarget.com/definition/deep-link
https://github.com/nisrulz/sensey

	Abstract
	1 Introduction
	2 Usage Model
	3 System Design and Implementation
	3.1 Background on Android UI
	3.2 Gesto Design Overview
	3.3 Capturing UI Events
	3.4 Recording UI Events
	3.5 Mapping UI Events and Replaying
	3.6 Implementation

	4 Use Cases
	4.1 Simplifying UI Interaction
	4.2 Executing Long Sequence of UI Actions
	4.3 Frequently Used UI Events
	4.4 Performing Multiple Tasks

	5 Evaluation
	5.1 Use Case Evaluation
	5.2 Instrumentation Evaluation

	6 Discussion and Future Work
	7 Related Work
	7.1 Gesture Detection and Voice Recognition
	7.2 Deep Links
	7.3 Record and Replay

	8 Conclusions
	9 Acknowledgments
	References

