
Developing Adaptive Quantified-Self Applications
Using DynaSense

Pratik Lade, Yash Upadhyay, Karthik Dantu, Steven Y. Ko
Computer Science and Engineering

University at Buffalo, The State University of New York
Buffalo, NY, USA 14260

{pratikla,yashupad,kdantu,stevko}@buffalo.edu

Abstract—There are a number of user-centric applications that
use data from sensors in a personal area network. The heavy
dependence of such applications on sensors means that if a sensor
is not available (e.g. a user forgets to carry a sensor device),
some applications might not work properly or even fail. However,
the data generated from a sensor that is unavailable can be
derived from other devices or a combination of sensors. Since it is
impractical and ineffective for application developers to track all
such scenarios, user applications generally cannot take advantage
of the sensor rich environment of a prospective user.

This paper introduces the design of DynaSense which is a
middleware system that allows user applications to be agnostic
to the data sources or sensors in use. DynaSense provides a
unified approach for accessing data from various data sources,
which can be sensors or compositions of other data sources.
The middleware dynamically decides how to acquire data from
available data sources, as well as how to deliver it to requesting
user applications. We present the APIs that allow user appli-
cations to easily express their needs. We also present four case
studies—a heart rate monitoring application, a user behavior
anomaly detection application, a calorie tracking application,
and a sleep monitoring application—to compare the development
of these applications with and without DynaSense. These case
studies show that DynaSense can effectively reduce the efforts of
developers, in terms of the lines of code written.

I. INTRODUCTION

With the advent of smartphones, wearables, and Internet
of Things (IoT) devices, sensing has become a ubiquitous
part of our daily lives. Smartphones are capable of knowing
our locations at all times; activity trackers are capable of
counting the number of steps we walk everyday; smartwatches
are capable of monitoring our heart rates; and the emerging
smart clothing promises to measure the exact stress on our
muscles at any given time. With all these devices, we are
living in an era of being able to quantify various aspects of
our daily activities at fine-grained time scales and round the
clock. Numerous mobile applications are being built around
these sensing modalities to provide us with nuanced infor-
mation to characterize and improve various aspects of our
lives. These applications are collectively called quantified-self
applications; they can identify abnormal sleep patterns, help
us reach exercise goals, remind us with to-do items based on
our locations, etc. All of these applications are possible only
because a user carries many devices equipped with various
sensors.

While there are already many such applications, we make
the following three observations on the current state-of-the-
art quantified-self applications. The first observation is that
each such application operates independently of the others
processing the same data again on its own. The second obser-
vation is that while several applications are being enabled, the
number of sensors/data sources are small, and so is the kinds of
computation being performed on them. The final observation
is that there is redundancy in the data collected; for example,
both a smartwatch and a smartphone have accelerometer
sensors which can be used to calculate the step count. But
most of the applications built are specific to sensors, rather
than sensing modalities.

Given these three observations, we have built DynaSense,
a middleware that allows rapid development and deployment
of quantified-self applications targeting sensing modalities
while automatically figuring out best sensors to use. We have
built this system on Android and demonstrate that building
quantified-self applications is easy in DynaSense since we can
leverage a large suite of libraries with common computations
built in and improve their efficiency at run-time by the reuse
of these computations. We also show that DynaSense is
highly extensible by its very design, and can be used to
build applications around novel sensing modalities such as
smartwatches, smart clothing etc.

More specifically, the contributions of DynaSense are the
following.

• Design: We propose a new design that frees quantified-
self application developers from worrying about sensor
management. Our design allows application developers
to write their application logic with data sources, instead
of specific sensors. A data source is essentially the data
itself, e.g., a step count, a number of hours of sleep,
etc., that can be acquired from either a single sensor or
multiple sensors. Our design provides APIs to define a
data source, as well as the acquisition and delivery of
data from data sources to user applications.

• Implementation: We have implemented our design on
Android as middleware that sits between data sources and
user applications. Our middleware is essentially a pub-
lish/subscribe system that consists of a naming service, a
publisher handler, and a subscriber handler.



• Case Studies: We have developed four applications with
and without DynaSense to evaluate how effective our
design is in reducing the efforts of developers. Our
studies show that in terms of the lines of code written,
DynaSense drastically reduces the lines of code written
for user applications by refactoring sensor management
from applications.

In the following sections, we will describe the design and
implementation of DynaSense. Section II motivates the need
for DynaSense. Section III discusses the design choices we
made in DynaSense as well as our overall architecture. Sec-
tion IV demonstrates the utility of DynaSense by redesigning
existing monolithic applications in DynaSense and showing
the benefits through code metrics and performance measure-
ments. Section V discusses related work. Finally, we conclude
in Section VI with our contributions and future work.

II. MOTIVATION

We first motivate our work in this section by surveying the
class of applications we are interested in, and discussing the
limitations of the state-of-the art.

A. Quantified-Self Applications

Sensing in our daily lives has enabled a new suite of
applications that were previously not possible. Tracking users
provides more context about the user for marketing and
advertising companies; a user’s location alone can be used
to suggest the nearest grocery store, coffee shop, shopping
mall, gas station, and other location-specific information for
more targeted advertising. Inference of personal context is
useful for the user as well. It is not uncommon for athletes
and surgery patients to manually track their vital statistics
like weight, diet plans, sleep, exercise regimen, etc. However,
with the advent of sensor-rich mobile devices like smartphones
and smartwatches, self-tracking is becoming easier without the
need for manual intervention. Even day-to-day activities can
benefit by better-tracking activity levels, stress levels, sleep
quality, calorie consumption, and so on. Wearable sensors
provide the means to continuously monitor user data. A high
rate of sampling of this data gives great insights into a person’s
life, and correspondingly a better quality of life in the long run.
Given these possibilities, there has been an explosion of per-
sonal monitoring applications (or sometimes called quantified-
self applications). We are particularly interested in this class
of applications that are envisioned to enhance our daily lives.
We can broadly classify them as follows:

• Daily Activity: An application can monitor calories con-
sumed and spent, sleep quality and duration, stress levels,
moods, etc. Most calorie expenditure applications typ-
ically rely on the accelerometer sensor on the wearable
device, and uses that data to compute the various activities
of interest.

• Overall Health: An application can track features like
heart rates while exercising, asthma and diabetes lev-
els. These applications use specialized sensors (e.g., for

asthma), or customized algorithms (e.g., one can use the
camera for measuring heart rate).

• Context: An application can maintain the user’s location
(e.g., work, home, playground) and the activity the user
engages in (e.g., watching TV, sleeping, or exercising),
and use this to trigger other measurement. Typically, such
sensing uses a combination of the GPS, inertial sensors,
and external information (such as WiFi hotspot, cellular
location).

The takeaway from this classification is that most of these
applications use a small subset of sensors. Typically these are,
a way to infer location (GPS, WiFi, cellular radio), means
to infer activities (accelerometers, gyroscope), and a modality
to obtain a richer context (camera). Therefore, an efficient
system would be able to provide data from these sensors to the
appropriate algorithms and re-use them as and when required.

B. Observations for Quantified-Self Applications
Given this class of quantified-self applications, we make

the following observations. First, While the quantified-self
movement dates back to the 1970’s, miniaturization of sensing
and computing has made them ubiquitous today. A smartphone
for example is equipped with an accelerometer, light and
pressure sensors, a compass, a camera, and a microphone,
each of which can be used to measure and/or compute context
of an individual. We also expect a smartphone to be carried
around by the owner throughout her day. Similarly, wearable
gadgets like smartwatches and smart clothes (that are closer to
our bodies) add complex sensors like galvanic skin response
sensors, heart rate monitors, VO2 sensors and others to the
above list. Finally external sensors that can be plugged into
our personal area network (PAN) like blood pressure monitor
or a weighing scale are also flooding the market at a rapid rate.
Smartphones serve as a hub where the data from all PAN scale
sensors can be collated and accessible for various applications.

This demonstrates the abundance of sensing modalities.
However, there is another observation we would like to make,
which is the redundancy of many sensing modalities. A
microphone for example, is potentially present in a user’s
smartphone, laptop, smartwatch and intercom. Similarly, an
accelerometer is present in a smartphone as well as a smart-
watch. Ideally, quantified-self applications should be able to
access the sensor data they require without hardwiring that to
the particular sensor allowing them to have the flexibility to
use any/all data available at any given moment. For example,
a user going for a run might have forgotten to take his
smartphone but is wearing his smartwatch. A calorie counting
application should switch its input accelerometer data to use
the data coming from the smartwatch, and not be tied to
work with the accelerometer from the smart phone only.
This example highlights the importance of inferring context
(unavailability of the smartphone), and the ability of a runtime
to appropriately switch the sensor data source as an important
feature of future quantified-self applications.

Finally, like we mentioned earlier, the number of sensor
values of interest is limited. This also limits the potential



Fig. 1. DynaSense Architecture

information that we can infer from this data. However, each
inferred piece of information (sometimes referred to as soft
sensors) can be used in multiple ways by different applications.
For example, a step counter can be used to calculate the
number of calories burnt by the individual as well as to infer
her activity level for the day. Both these applications however
do not need to re-calculate the step count. An efficient system
would allow re-use of such computation across applications to
minimize the amount of redundant computing done.

C. Summary of Our Motivation

Sensing and computing is becoming both ubiquitous as well
as cheap. This has enabled a new class of personal monitoring
or quantified-self applications that have the potential to revo-
lutionize our daily lives. However, most such applications are
being built monolithically without any overarching architec-
ture. There are several features that would be desirable that
do not exist currently because of this. Some of them are as
follows:

• Sensor Multiplexing: The same sensor values are available
from various devices. We should be able to use the best
source for a given type of data at any given point without
hardwiring an application to a particular sensing source

• Reuse Sensor Computation: Several computations we per-
form on sensed data is common across various applica-
tions. The programming model and runtime should allow
for efficient re-use of computation across applications

• Code Reuse: Given that there is a lot of computation
that is repeated across applications, a framework should
provide the commonly used computations to simplify
programming for the developers

Given these goals, we have built DynaSense, a framework
that simplifies the programming of quantified-self applications
in modern mobile systems.

III. DYNASENSE: DESIGN AND IMPLEMENTATION

As discussed in Section II, we have two primary design
objectives. We would like to allow applications to access
sensor data without tying them down to a particular sensor. The
second design objective is for the programming framework
to allow efficient code re-use across applications for rapid
application development. And finally, the third objective is for
efficient re-use of computation at run time across applications.

Figure 1 shows the architecture of DynaSense. It consists
of three main components—user applications, data sources,
and the DynaSense middleware. Data sources, as the name
suggests, are sources of data. These could be physical sensors
in devices (such as accelerometers or gyros in smartphones
and smart watches), or soft sensors that process data from
sensors to produce data (such as step count or calories burnt
from accelerometer data) for other applications. Both of them
can act as producers of data. Applications are consumers
of data. They take as input one or more types of data and
produce useful information for the user (e.g., an application
can take heart rate and step count to produce the person’s
stress level). The DynaSense middleware sits in between the
applications and data sources, and connects the two at run
time. The primary reason for this design is to be able to re-wire
the connection between producers and consumers at runtime.
The middleware tracks the user context, sensors available, and
other relevant information at run time to make this happen.

In the rest of the section, we describe our DynaSense
ecosystem in detail. It consists of APIs to interface applications
to sensed information, and wire an application together. It also
consists of a run time that runs as a service on the smartphone
to track context and assist currently active applications. Fi-
nally, we will discuss how DynaSense meets all of our design
goals.



Fig. 2. Developer’s Interaction with DynaSense

A. DynaSense Usage
Our envisioned scenario for DynaSense is that there would

be regular application developers that write user applications,
and data source developers that implement personal data
analytics algorithms (e.g., a new step count algorithm). All
of these would be available in an online application store
(e.g., Google Play) so that end users can benefit from latest
algorithm implementations by downloading new data source
libraries similar to applications. The DynaSense middleware
would be an application downloadable from an online applica-
tion store as well, and is expected to run without any system
privileges on the smartphone.

B. DynaSense APIs for User Applications and Data Sources
As has been described in our design goals, we would like

the applications to compute with sensed information, and not
be directly tied to the sensors themselves. In order to achieve
this, DynaSense uses a publish-subscribe system to connect
the data sources to the applications. The publish-subscribe
system is ideally suited for our purpose as the connection
between publishers and subscribers is done at run time. The
DynaSense framework provides APIs for user applications
and data sources so that they can publish data, subscribe to
data sources, or do both. The goal of the user application
APIs is ease of programming; it simplifies how an application
accesses sensor data by hiding low-level details about sensors
such as where they are located and how they should be
accessed. The goal for our data source APIs is composability,
so that data source developers can provide new types of data
easily. Table I lists our APIs. As seen in Figure 2, our APIs
allow hierarchical structure for publishers and subscribers
where a publisher can also subscribe to lower level data.
The blue boxes represent user applications and the green
boxes show data sources. The Heart Rate user application
requests a heart rate from DynaSense which results in a call
to HeartRateAlgo. HeartRateAlgo can use DynaSense to get

camera frames with parameters like duration and number of
frames. Thus HeartRateAlgo uses the Camera sensor as an
input and produces a soft sensor value. When HeartRateAlgo
is unavailable, DynaSense can call an alternate data source
application that provides a heart rate.

The data source interface also comes with a naming con-
vention to specify the type of data being published/subscribed.
This is analogous to the mime types in a browser to recognize
the particular file type. Further, the interface is also parame-
terized allowing the publisher to specify particular features of
the data being published (such as resolution of the image or
rate of the accelerometer data) and the subscriber to specify the
application requirements (e.g., image resolution and data rate).
As will be described later, the runtime resolves the publisher
and subscriber parameters to ensure that the data publisher
satisfies the application requirements efficiently (e.g., a sensor
is sampled at a rate that meets all applications subscribing to
that data will not exceeding them).

1) Publishing: A data source is an application that pub-
lishes a specific type of data. To illustrate, let us consider
the example of the data source ‘Calories Consumed’. As part
of the initialization, the application registers a data source
of type ‘Calories Consumed’ with DynaSense. Our design
assumes that both the developer of the publisher and subscriber
application are aware of our data type name convention, and
that it is consistent across applications.

Publishers can also specify parameters that describe char-
acteristics of the publisher through this interface. Parameters
for the publishing can be set by invoking the Parameters
APIs. Once the parameters are specified, they are passed as
an argument to the data source initialization.

DataSource ds = new DataSource("Audio");
Byte[] samples = getSamples(int samplingRate);
Bundle audioDetails = new Bundle();
audioDetails.putByteArray



TABLE I
DYNASENSE’S APIS FOR DEVELOPERS

DataSource
dataSourceName:String
appName: String
appPackageName: String
addNewDataSource()
addParams(params: Parameter) subscribe(endTime: Calendar)
publish(details: Bundle)

Parameter
parameters: MaphString, Stringi
get(param:String)
set(param:String, value:String)

("AudioData", samples);
ds.publish(getApplicationContext(),

audioDetails);

The above code declares to DynaSense a data source that
provides audio data. Adding a new data source is functionally
equivalent in DynaSense to declaring a new publisher. This
information is captured by the DynaSense runtime, and kept
track of. Data sources can be one-shot, periodic, or aperiodic.
One shot, like the name suggests, publishes one reading.
Periodic publishers publish data at a time interval specified by
the subscribing application. Aperiodic data sources like step
count are published at irregular intervals. This is mainly for
data that might be triggered by an event, potentially external
to the system, something that might not be of periodic nature
or whose period cannot be determined by the runtime.

Publish requests are dispatched to the DynaSense runtime.
Our current prototype is built in Android, and employs An-
droid intents for this communication. However, this can be
easily re-implemented through any other messaging service
depending on the target platform.

The data source starts publishing data once it receives a
request from DynaSense. To receive requests, a data source
needs to maintain a list of applications requesting this data. In
our current implementation, this is accomplished by extending
BroadcastReceiver. The onReceive method of a data source
parses the data source requested, and then starts further
processing required to publish that data.

Applications can publish multiple data sources, but needs to
declare each one of them to DynaSense. Hence it becomes im-
portant to parse the incoming request to identify the requested
data source. The incoming request also includes parameters
that were sent by the data user in a bundle.

DataSource ds = new DataSource
("CaloriesConsumed");

String[] fDetails = new String[]
{foodName, calories, servings};

Bundle details = new Bundle();
details.putStringArray

("BundleValue", fDetails);
ds.publish(

getApplicationContext(),
details);

2) Subscription: A data user is an application that is in
need of a specific type of data. In the case of a calorie tracker,
an example of this is ‘calories consumed.’ To send a request
to DynaSense, the applications subscribes to the data type
“CaloriesConsumed.”

DataSource calCon = new DataSource
("CaloriesConsumed");

calCon.subscribe(endTime);

Similarly, an application can subscribe to audio data and
get data periodically. It specifies the duration for which the
data is required and adds parameters like “SamplingRate” and
“Channel” which are predefined by the publishing application.

DataSource audioDs=new DataSource(Audio);
Calendar endTime = Calendar.getInstance();
endTime.add(Calendar.SECOND,10);

Parameter audioParams=new Parameters();
audioParams.add(SamplingRate, 44100);
audioParams.add("Channel", "MONO");

audioDs.addParams(audioParams);
audioDs.subscribe(this.getApplicationContext(),
endTime);

C. DynaSense Middleware

The DynaSense middleware is an application-level service
that runs in the background. Its main job is to bridge user
applications and data sources. In order to accomplish this, the
middleware needs to perform four tasks as follows:

• Tracking what data sources are available
• Tracking the types of data the available data sources can

produce
• Tracking applications and the requested data types re-

spectively
• Delivering data to appropriate user applications when

available
Below, we first describe the meta data that the middleware

maintains to perform these tasks. We then describe how the
middleware accomplishes the above objectives.



1) Middleware Runtime Bookkeeping: The DynaSense mid-
dleware maintains three types of information. First, it main-
tains the list of user applications and data sources. These are
dynamically registered and the middleware monitors them for
their availability. Second, the middleware maintains the list of
available data types. For example if the data type ‘StepCount’
can be published by three applications, then the middleware
maintains information about all three applications available
to produce step counts along with the data sources that can
produce it. Third, the runtime maintains a list of subscriptions.
Note that each of the data types will potentially have multiple
subscribers making it a one-many mapping. These are stored
in a SQLite database in our implementation.

2) Middleware Operations: As mentioned earlier, there are
four tasks that the middleware performs—maintaining the list
of user applications, the list of data sources, the list of data
types, and delivering data. For the first task (maintaining the
list of user applications), the middleware responds to subscribe
requests from user applications. This triggers a query in the
DynaSense database for all matching data sources. If multiple
data sources are found, the DynaSense runtime has the ability
to pick a suitable one based on a prior policy (such as
best resolution or most energy efficient). Currently, the first
available data source is picked. If that data source returns
bad values or times out, DynaSense marks it as unavailable
and chooses another data source if available. If no other data
sources are available, it sends a notification to the application
that the data source is unavailable.

To maintain the list of data sources, the middleware re-
sponds to registration messages that a data source application
sends to register itself. However, after the registration, since
our system relies on data sources that connect to sensors in
the personal area network, it is possible for some sensors to
be unavailable. For example, a person forgetting to wear a
smart watch when she steps out would result in an application
exception for applications that connect to data sources on
the smart watch. Such data sources could be temporarily out
of service but may become a part of the system after some
time. Also, it is possible to have data sources that always
return bad values. This would be the case with data sources
that are developed incorrectly or are malicious. We need to
make a note of such data sources and mark whether they
are temporarily or permanently out of order. The DynaSense
service keeps track of such things by being the central point
for all communication. All requests for context monitoring
go to the service first so that it chooses the best data source
to be contacted. Similarly, all data source values go to the
service first so that if they are not received within a certain
timeout period, the service can mark them unavailable and
choose the next available data source. Additionally, this allows
us to enforce policies for choice of data sources when more
than one data sources can publish the same data.

To maintain the list of data types, the middleware first
receives the information about what data types are provided
by a data source in the registration process. However, if there
are multiple data sources that provide the same data type, we

need to keep the information and select one source when
the data type is requested by a user application. In such
cases, some policy of data source selection is required in the
middleware. For example, consider a person who normally
wears a personal fitness tracker that monitors step count. If at
some point the person forgets to wear it, DynaSense should
detect failure in fetching step count data from the fitness
tracker, and automatically switch to the step counter data
source that collects data from the smartphone instead of the
fitness tracker. Our middleware currently uses a first-encounter
policy, where the first data source registered for a data type is
used to provide data.

Finally, to deliver data, a data source application uses the
publish() method of the library to send it to the mid-
dleware. This triggers the receiveFromDataSource()
method which queries the table UserApp to find all sub-
scribers for that data source and forwards the data to each of
them using the notifySubscribers() method. Thus, the
DynaSense itself does not store any data.

To illustrate the working of the implementation of Dy-
naSense, we revisit the example of a user forgetting to carry
a smartphone on the user’s daily run. In this case, we are
assuming that the subscribing application, the middleware
service and the publishing application that ultimately sends
the step count to the subscriber all exist on the smartphone.
In a typical scenario, the subscribing application monitors
the step count of the user at frequent intervals throughout
the day. In this situation, while the user is out for a run
and both devices are not communicating with each other, the
smartphone keeps reporting that there has been no increase
in number of steps taken since morning. As soon as they get
connected, the publishing application detects the smartwatch
and fetches the latest step count. Since this functionality is
built in the publishing application, the subscribing application
on the smartphone did not need extra code to take into account
the availability or lack thereof of the smartwatch at any point
throughout its processing.

IV. EVALUATION

The primary goal for DynaSense is to simplify application
development, and better enable better code and computation
re-use. To demonstrate these features, we have implemented
four applications— a heart rate monitor, a user behavior
anomaly detector, a calorie tracker, and a sleep monitor. For
each application, we have implemented two separate versions;
one using the DynaSense framework and the other in Android
without DynaSense. This section will compare these two
versions to evaluate the usefulness of DynaSense. For each
application, we compare the total lines of code written with
and without DynaSense. We also demonstrate that running
DynaSense does not add significant overheads to application
run time making it feasible for most if not all quantified-self
applications.



TABLE II
LOC (LINES OF CODE) COMPARISON OVER DIFFERENT APPLICATIONS

Heart Rate Sleep Detection User Anomaly Calometer
Monitoring Detection

Without DynaSense 276 477 181 519
With DynaSense 160 196 153 119
Data Source application 131 183 81 403

A. Case Studies

We have developed four applications with and without
DynaSense, and compared the numbers of lines written.
Table II summarizes the results from this effort. As the
results demonstrate, using DynaSense has a tangible benefit
in reducing the lines of code that need to be written. The
use of DynaSense results in a high degree of code reuse by
separating sensing from computing. The DynaSense library
has 114 lines of code and the DynaSense service has 298 lines
of code. In implementing our applications with DynaSense,
we observed that a substantial amount could be reused. For
the heart rate application, around 40 percent of the code was
reusable after the camera data source was separated from the
heart rate algorithm. For the anomaly detection application, the
algorithm has been implemented in 315 lines, but the degree
of code reuse is variable. In the current implementation a file
is used as the data source, and the sensing component had
81 lines of code. However, a rough implementation of a sleep
detection application has around 400 lines which means that
while sensing actual real time context variables, there will
be more than a 100 percent code reuse. Below, we describe
each application and discuss what the differences are with and
without using DynaSense.

1) Heart Rate Monitoring: The first application that we
created using DynaSense uses a smartphone’s camera to record
images when a finger is placed on the camera lens [10], [7].
The idea here is that as blood flows into our capillaries, they
increase in size obstructing more light around the camera lens.
When blood flows out of the capillaries, their size reduces and
they obstruct comparatively less light. We use these frames
to calculate the average red component values or brightness
values. These brightness values are then processed to remove
outliers, smoothed over a fixed window and plotted against
time to give a reading similar to an ECG. Heart rate is
calculated using a simple formula: HR = (60 x frame rate
x no of peaks)/ no of frames.

The first version of this application uses Android’s API to
access the camera and record about 300 frames at 15 fps.
The code was divided into two parts: one for accessing the
camera and the other to process brightness values. The latter
part consisted of 160 lines of code but required a longer time
for research and troubleshooting. The former mostly consists
of code that can be used by other applications that use camera
frames, such as face recognition. Thus, it is a good candidate
as a data source application that produces camera frames.

With DynaSense, the implementation consists of a data
source (CamDS) and a user application (HRCam). CamDS

gives camera data. HRCam uses DynaSense to subscribe for
data source “Camera.” In CamDS, we first register it as a
publisher:

DataSource camDS=new DataSource("Camera");
addDataSource(camDS,

DataSource.STREAMING);

When HRCam needs to calculate the heart rate, it subscribes
for “Camera” data source as follows:

DataSource cam=new DataSource("Camera");
Parameters camParams=new Parameters();
camParams.add("FPS",15);
camParams.add("TotalFrames","300");
cam.addParams(camParams);
cam.subscribe();

With this setup, a third party developer can create an applica-
tion to record camera frames from the laptop and send them
to the smartphone over Bluetooth/WiFi.

DynaSense can then choose to procure images from dif-
ferent sources without affecting HRCam which is unaware
of the source of data. We were able to reduce the number
of lines written from 276 lines to 160 lines in the user
application. The data source application has 131 lines of code,
that is reusable for other user applications. This simplifies
development also by cleanly separating the data manipulation
from sensor initialization and data acquisition.

2) User Behavior Anomaly Detection Using DynaSense:
This application is a re-creation of previously published work
on user behavior anomaly detection [4]. It is intended to
demonstrate the benefits of DynaSense in an application that
has already been developed. The application is intended to be
useful for children or older people whose activities need to
be monitored remotely. In the implementation, the following
user activities are tracked: sleeping, meal preparation, washing
dishes, entering, and leaving home and working. The current
implementation uses a dataset of a resident living in a smart
home for six months [1]. This application learns the normal
behavior of a user for specific days of the week and uses
it to detect anomalous behavior [4]. The idea is to learn the
occurrences of different activities by creating multiple models
for each activity.

To track a user’s behavior, we need to track each activity
of the user, the time it occurs, its duration and observe
its relationships with other activities. To model individual
activities, we use these features along with the total number of
occurrences in a day and cluster them using DBSCAN which



is a density based clustering algorithm. After clustering, each
activity occurrence is either classified into a cluster or noise.
The clusters that are close to each other are merged to create
a second layer of clusters that represent relationships between
activities. Each new activity can now be classified as routine
behavior or an anomaly.

To implement this application on Android, we created a
module for the DBSCAN algorithm using existing libraries.
Further, we created a class that represents activity instances
and classifies them based on existing clusters. The dataset
is saved as a file and so to get data, we need implement
standard file operations. To develop this application for real
world use, we need to gather data from several sources to
find the user’s current context. One of the activities that this
application monitors is sleep. As described in the next section,
a rough implementation of a sleep monitoring application has
400 lines of code. This tells us how large this user anomaly
detection application would be if it implemented its own
logic to monitor user’s location, sleep and current activity.
The contextual information that this application needs can be
used by other similar applications too and so this is a classic
example of code reuse.

The idea of using a dataset for such an application is to
verify the design and correctness of the anomaly detection
algorithm which is the most important part for the success
of such an application. However, for real world use, this
application would require a very high degree of sensing. As
mentioned in the motivation for this thesis, the application
developer would have to proceed in a depth first manner to
track individual activities. For example, starting with sleep de-
tection the developer would have to interface with all sources
of data that a sleep detection algorithm needs. Similarly, to
detect leaving and entering home, exercising or preparing meal
the user would have to have create a lot of sensing modules. If
DynaSense is used, the application can register for any number
of activities that it wants to track and focus only on improving
the anomaly detection algorithm.

To implement this application with DynaSense, we create
an application called User Behavior which implements the
DBSCAN algorithm. This application registers for data source
“User Context.” The data is provided from an application
called “User Data” which reads data from a file and sends it to
DynaSense. In a practical implementation of User Behavior,
a host of applications monitoring the user’s context would be
created to publish data like “At work,” “Driving,” “Sleeping,”
etc. This would result in the application being very small as
compared to its sensing components. Also, as new sensing
components are developed, the granularity of context moni-
toring can be refined without changing the application logic
of User Behavior.

3) Calorie Tracking: One of the major motivations for
quantified-self applications is personal health. A major chal-
lenge in personal health has been to track the number of calo-
ries consumed by an individual. This application aggregates
several techniques towards this goal.

Automating the measurement of daily calorie intake has not

been perfected yet and smartphones do not have the capability
to accurately measure the calories a person ingests. Hence
external sources need to be relied on to monitor the intake
of calories depending on food consumption. Services such as
MyFitnessPal and Nutritionix store large databases of nutrition
information online. This information is accessible through
their APIs and allow us to look up the calories consumed (with
detailed breakdown) given the product code of the item eaten.
Nutrition information is also based on manual input if the food
being eaten does not come with a product code. Finally, there
are novel devices such as Vessyl1 that allow for automatic
calorie measurement of liquids, and can be interfaced with
through Bluetooth.

The application also measures daily activity or expenditure
of calories for which the user needs to manually log a workout
session. The calorie lost for each activity such as walking,
running, biking, etc. is then estimated.

As a standalone application, we provided calorie consump-
tion tracking in three ways: using a barcode scanner to scan
barcodes from food products, NFC tag identifiers to specify
frequently consumed known quantity of food, or manual entry
for everything else. We also added a feature to measure the
number of steps walked taken daily.

To develop this application, we created a user interface
which gives user the option of adding a new item using
barcode scanning, by tapping an NFC tag or by manually
entering data. This application can be separated into two parts
where one part which includes the user interface registers for
data sources “CaloriesConsumed” and “CaloriesSpent.” This
part of the application would fetch data from DynaSense and
decide how to use it (for example, store it in a database).
Data sources can be created that provide barcode scanning,
interfacing with Vessyl or logging workouts that publish data
source “CaloriesConsumed” or “CaloriesSpent.”

With DynaSense, we separated the data collection from
the data assimilation and analysis splitting the calorie intake
and expenditure into several applications. We implemented an
application for barcode scanning that searches an open health
database for the product code scanned. It publishes the product
information to DynaSense as the data source Calories
Consumed. Similarly, we developed an application that can
add new NFC tags and define what they signify(for example,
a cup of coffee with 250 calories). Each of the features can
be individually developed, tested and added to the ecosystem
at any time with little to no changes to the application that
does the analysis. This reduced the size of the application for
calorie tracking to one fourth of its size when compared to the
application without DynaSense. Such separation also allows
for independent development of novel data sources without
affecting the end application.

4) Sleep Monitoring: Toss n’ Turn[8] describes an ap-
proach to detect sleep and monitor sleep quality. A similar
approach to monitor sleep is also described in Unobtrusive
sleep monitoring[3]. We used these references to implement

1https://www.myvessyl.com/

https://www.myvessyl.com/


a sleep monitor that uses various sensory inputs to detect
whether a person is sleeping at the moment.

To detect whether a person is sleeping, the most important
factors can be intuitively guessed, such as: when was the phone
display on, how much is the surrounding noise, what is the
ambient light level, has the phone been moving, and so on.
We used factors that were considered in Toss n’ Turn[8] and
built the sleep monitoring application.

We built a simple UI that shows whether a person is
sleeping or not at any given time. Data from ambient light
sensor, accelerometer, step counter, battery charging state and
device screen state is collected through Android’s Sensor API
and given as input to a decision tree to conclude whether
a person is sleeping. This application can be separated into
two modules: the application that users interact with which
consists of a UI that displays sleep duration and quality,
displays historic data, etc. and an application that monitors
phone sensors periodically and inputs them to a decision tree
algorithm for classification.

In the implementation in DynaSense, the sleep data source
application takes the period at which sleep should be moni-
tored as a parameter. It evaluates if the user is sleeping when
data from all sensors is received. This information is published
as a data source isSleeping. The sleep detection applica-
tion uses this data source, and stores historic sleep data to
show statistics to the user. By separating the two applications,
there is a 50% reduction in the lines of code for developing the
application without DynaSense. Also, other applications can
make use of the sleep data source for other purposes. Further,
other sources like smart watches can provide sleep data to
DynaSense dynamically without changing the user application
that needs this data.

Since the algorithm heavily relies on readings coming
directly from sensors, there is not much scope for overlapping
data sources. The device battery state and screen state are
unique sensors that cannot be replaced by anything similar.

B. Performance
Although the focus of DynaSense is the ease of program-

ming and maintenance for application developers, we present
performance results that demonstrate the fact that DynaSense
does not impose much overhead. We have measured the
performance of DynaSense in three aspects—the subscription
latency of a source or an application, the lookup latency within
the DynaSense middleware, and the end-to-end latency for
delivering data. We have used an LG Nexus 5 device running
Android 5.1. For each data point, we report the average and
the standard deviation over 10 runs.

1) Subscription: The first bar in Figure 3 shows the sub-
scription latency. This is a one time cost that incurs when
a user application first registers with DynaSense for a data
source, which takes around 15 ms on average. Although this
operation is asynchronous, a user application does not receive
any data until its subscription for a data source is completely
finished. Thus, this time lag is negligible if the user application
is requesting periodic data since this initial time gets amortized

 0
 10
 20
 30
 40
 50

Subscription

Lookup

End-to-End

L
a

te
n

cy
 (

m
s)

Fig. 3. DynaSense Microbenchmark Results

TABLE III
COMMUNICATION AMONG PROCESSES

Initial Publishing Total per
No. of Intents Subscription Transaction
One Shot 1 + 1 1 + 1 4
Periodic 1 + 1 n⇥ (1 + 1) 2⇥ n+ 2
Aperiodic 1 + 1 n⇥ (1 + 1) 2⇥ n+ 2

over time. However, for applications that request one-time
data sources frequently, this latency will contribute to the time
required for their overall data access latency.

2) Lookup: The second bar in Figure 3 shows the lookup
latency within the DynaSense middleware. When a data source
sends a data item to DynaSense, it retrieves the user applica-
tions that have subscribed for that data source. For example,
when the camera data source sends frames to the middleware
service, it retrieves Heart Rate application as one of the
subscribers. We measure the latency for this lookup, which is
around 4 ms on average. We note that this is largely dependent
on the specific implementation for lookup, hence we do not
measure it in a more thorough manner; namely, we use SQLite
that Android provides, and the lookup performance is exactly
the lookup performance of SQLite on Android.

3) End to End Performance: The last bar in Figure 3 shows
the end-to-end latency measured with a simple step count
application that we have written. The reason why we have
written a separate application is that the step count application
does not have any complicated logic, hence is simple to
measure the end-to-end latency. This step count application
fetches the number of steps walked from the start-up time of
the smartphone, whenever its user presses a button. As shown
in Figure 3, the latency from the moment the user presses
the button to the moment it receives the value averages to
29 ms over 10 runs, which is nominal for personal analytics
applications DynaSense supports. This latency includes the
latency for subscription and actual data delivery.

4) Communication Between Processes: Table III shows the
cost of communication in DynaSense. Our implementation
uses intents on Android, which is an IPC mechanism that
allows communication between different applications. We use
the number of intents as a unit to measure the cost of com-



munication. If a user application has a one-shot task that runs
only once for a sensor value, the number of intents exchanged
between a user application and DynaSense is four in our
implementation. On the other hand, if a user application has
a periodic or aperiodic task that runs continuously, the initial
subscription process takes a total of two intents, followed by
two intents for every time data is published. In addition to
this, each new publisher needs to send one initial registration
intent to the DynaSense service.

V. RELATED WORK

Context-awareness in mobile systems has received a fair
amount of attention in research. In particular, there is work that
focuses on efficiently allocating sensor resources in a mobile
system based on context very much in the flavor of our work.
We will describe four such systems in detail. We will also
identify the primary differences between our work and these
for clarity.

ODK Sensors [2] provides control of external sensors
through sensor drivers that are written as mobile applications.
The concept of sensor drivers is similar to our concept of
data source applications in that both are written as mobile
applications and control sensors. However, a sensor driver in
ODK Sensors is similar to a traditional device driver where
the primary job is controlling device hardware; our data source
application is designed to implement new algorithms that
synthesize multiple data sources, whether it be raw sensors
or other data source applications. Our data sources are sensor-
agnostic, and depend on the sensed data type allowing us to
use the ”best” available sensor at any given time that provides
that sensed data type.

ACE [9] is a rule-based context inference system that uses
multiple context variables to infer the values of other context
variables. For example, if the context variable atHome has
been computed recently and is true, an application requesting
other context variables such as isDriving, atWork, etc. will
automatically be returned false. Such rule-based inference is
complementary to our approach where the primary focus is
not to infer a context but to provide a general architecture
that maintains and multiplexes sensors and algorithms that can
produce high-level data such as contexts.

SeeMon [5] is an energy-efficient context monitoring system
that continuously monitors the context of a user. In doing so, it
leverages multiple sensors available within the user’s personal
area network. Similar to DynaSense, SeeMon provides an
API that an application can use to query which context its
user is currently in. The API also handles algorithms that
produce higher-level data from raw sensor data, called context
translation maps. This is roughly analogous to our data source
applications that implement personal data analytics algorithms
and produce higher-level data such as heart rate. However,
unlike DynaSense, SeeMon has two limitations. First, it does
not allow multiple data-producing algorithms to co-exist if
they produce the same type of data. Second, it does not allow
hierarchical composition of higher-level data sources from
lower-level data sources.

Orchestrator [6] extends SeeMon to relax the first limitation.
It is described as a resource orchestration framework, selects
from multiple pre-defined plans for resource use, and selec-
tively applies them based on resource availability and demands
at run-time. The primary difference between Orchestrator and
Dynasense is that the plans in orchestrator are pre-defined.
This limits the expressivity of programs and requires the
programmer/planner to know all available resources at design
time. In contrast, our programming model does not bind a
data source to a sensor, and makes this connection at run
time. This allows for more flexibility including the use of
newer sensors, and learning of context that over time for more
efficient operation. Our contribution is a novel programming
model that gets rid of the limitations in prior work by making
applications address data as opposed to sensors.

VI. CONCLUSIONS AND FUTURE WORK

The goal of this paper is to design a programming model
and runtime allows programmers to not worry about the
available sensors but focus on the sensor data for the intended
application. The DynaSense programming model achieves this
by providing an abstraction called data sources and using a
runtime to bind a data source to a sensor. By using DynaSense,
user application developers need not concern themselves with
writing tedious code to access data from individual sensors. At
the same time, applications automatically support new sensors
without changing any code in their application by just adding a
new data source. We show that the overhead of the middleware
is minimal, and our programming model is ideally suited for
quantified-self applications by designing four applications. Our
programming model also allows for greater code re-use.

In the future, we plan to explore various policies to decide
on the best data source to use when multiple sensors are
publishing the same data. We envision designing rich policies
that trade off energy, quality of service, and computation
depending on the exact application. For example, it would
be interesting to explore battery optimization policies that
can be used here to drive the choice of data source for an
accelerometer data when accelerometers are present in a smart
watch as well as the smartphone. In addition, we plan to
expand integration of external sources such as smart glasses,
pedometers and others to leverage their processing power as
well as sensors.

REFERENCES

[1] Wsu casas smart home project, January 2011.
[2] Rohit Chaudhri, Waylon Brunette, Mayank Goel, Rita Sodt, Jaylen

VanOrden, Michael Falcone, and Gaetano Borriello. Open data kit
sensors: Mobile data collection with wired and wireless sensors. In Pro-
ceedings of the 2Nd ACM Symposium on Computing for Development,
ACM DEV ’12, pages 9:1–9:10, New York, NY, USA, 2012. ACM.

[3] Zhenyu Chen, Mu Lin, Fanglin Chen, N.D. Lane, G. Cardone, Rui Wang,
Tianxing Li, Yiqiang Chen, T. Choudhury, and A.T. Campbell. Unob-
trusive sleep monitoring using smartphones. In Pervasive Computing
Technologies for Healthcare (PervasiveHealth), 2013 7th International
Conference on, pages 145–152, May 2013.



[4] Enamul Hoque, Robert F. Dickerson, Sarah M. Preum, Mark Hanson,
Adam Barth, and John A. Stankovic. Holmes: A comprehensive anomaly
detection system for daily in-home activities. In Distributed Computing
in Sensor Systems (DCOSS), 2015 International Conference on, pages
40–51, June 2015.

[5] Seungwoo Kang, Jinwon Lee, Hyukjae Jang, Youngki Lee, Souneil Park,
and Junehwa Song. A scalable and energy-efficient context monitoring
framework for mobile personal sensor networks. Mobile Computing,
IEEE Transactions on, 9(5):686–702, May 2010.

[6] Seungwoo Kang, Youngki Lee, Chulhong Min, Younghyun Ju, Taiwoo
Park, Jinwon Lee, Yunseok Rhee, and Junehwa Song. Orchestrator: An
active resource orchestration framework for mobile context monitoring
in sensor-rich mobile environments. In Pervasive Computing and
Communications (PerCom), 2010 IEEE International Conference on,
pages 135–144, March 2010.

[7] Sungjun Kwon, Hyunseok Kim, and Kwang Suk Park. Validation of

heart rate extraction using video imaging on a built-in camera system of
a smartphone. In Engineering in Medicine and Biology Society (EMBC),
2012 Annual International Conference of the IEEE, pages 2174–2177,
Aug 2012.

[8] Jun-Ki Min, Afsaneh Doryab, Jason Wiese, Shahriyar Amini, John
Zimmerman, and Jason I. Hong. Toss ’n’ turn: Smartphone as sleep
and sleep quality detector. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’14, pages 477–486,
New York, NY, USA, 2014. ACM.

[9] Suman Nath. Ace: Exploiting correlation for energy-efficient and
continuous context sensing. Mobile Computing, IEEE Transactions on,
12(8):1472–1486, Aug 2013.

[10] Panagiotis Pelegris, K. Banitsas, T. Orbach, and Kostas Marias. A novel
method to detect heart beat rate using a mobile phone. In Engineering
in Medicine and Biology Society (EMBC), 2010 Annual International
Conference of the IEEE, pages 5488–5491, Aug 2010.


	Introduction
	Motivation
	Quantified-Self Applications
	Observations for Quantified-Self Applications
	Summary of Our Motivation

	DynaSense: Design and Implementation
	DynaSense Usage
	DynaSense APIs for User Applications and Data Sources
	Publishing
	Subscription

	DynaSense Middleware
	Middleware Runtime Bookkeeping
	Middleware Operations


	Evaluation
	Case Studies
	Heart Rate Monitoring
	User Behavior Anomaly Detection Using DynaSense
	Calorie Tracking
	Sleep Monitoring

	Performance
	Subscription
	Lookup
	End to End Performance
	Communication Between Processes


	Related Work
	Conclusions and Future Work
	References

