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ABSTRACT
This paper proposes Flow Permissions, an extension to the
Android permission mechanism. Unlike the existing permis-
sion mechanism, our permission mechanism contains seman-
tic information based on information flows. Flow Permis-
sions allow users to examine and grant per-app information
flows within an application (e.g., a permission for reading
the phone number and sending it over the network) as well
as cross-app information flows across multiple applications
(e.g., a permission for reading the phone number and send-
ing it to another application already installed on the user’s
phone). Our goal with Flow Permissions is to provide visi-
bility into the holistic behavior of the applications installed
on a user’s phone. In order to support Flow Permissions
on Android, we have developed a static analysis engine that
detects flows within an Android application. We have also
modified Android’s existing permission mechanism and in-
stallation procedure to support Flow Permissions. We evalu-
ate our prototype with 2,992 popular applications and 1,047
malicious applications and show that our design is practical
and effective in deriving Flow Permissions. We validate our
cross-app flow generation and installation procedure on a
Galaxy Nexus smartphone.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-
ers; C.5.3 [Computer System Implementation]: Micro-
computers—portable devices(e.g., laptops, personal digital
assistants); F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—program analysis
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1. INTRODUCTION
Modern mobile OSes such as iOS and Android provide

permission mechanisms, allowing users to review how an
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application (“app”) accesses the resources on a mobile de-
vice. Android, in particular, has a comprehensive permis-
sion mechanism; at development time, an app writer needs
to explicitly request permissions by statically declaring them
in an app configuration file (AndroidManifest.xml). Dur-
ing installation, a user needs to review the permissions that
an app requests and explicitly grant them.

Currently, there are over 130 permissions which Android
apps can request in API level 17. Generally, an app can ask
for permissions to use protected APIs for phone resources
(e.g., storage, NFC, WiFi, etc.) or information available on
the phone (e.g., contacts, location, call logs, etc.). For ex-
ample, if an app wants to use APIs that control the camera,
it needs to request android.permission.CAMERA.

Although considered to be robust, the current permission
mechanism of Android provides little contextual information
on how permissions of an app are leveraged by the app. For
example, it is unclear if an app with the permission to access
the Internet, as well as the phone’s SIM card, exposes the
private telephony data stored on the SIM card to the outside
world. Apps can also communicate with one another via
Android’s IPC mechanisms to effectively gain permissions
they were not explicitly given, thereby bypassing the current
permission mechanism [18].

To address these issues, we propose a new permission
mechanism, called Flow Permissions, that extends the exist-
ing Android permission mechanism with information flows
between permission domains (e.g., reading from the SIM
card and sending over the network). Our Flow Permissions
identify single-app flows, i.e., information flows within an
app, as well as cross-app flows, i.e., information flows across
apps via IPC mechanisms. In order to synthesize single-app
flows, we develop an automated static analysis engine that
detects information flows within an Android app. To synthe-
size cross-app flows, we modify Android to perform cross-
app permission analysis when installing a new app. This
cross-app permission analysis compares information flows
within the new app to those of already-installed apps and
derives new Flow Permissions. This combination of static
and installation-time analysis comprises BlueSeal, our Flow
Permission synthesis system.

More specifically, this paper makes the following contri-
butions:

• Flow Permissions: We propose a new permission
mechanism based on information flows between per-
mission domains within an app, as well as across mul-
tiple apps. Cross-app flow detection is leveraged at



installation time to alert the user of possible interac-
tions between apps.

• BlueSeal: We develop a holistic system, called Blue-
Seal, for automatically generating Flow Permissions
and building them into Android. The design of Blue-
Seal shows a primer on how to modify classic pro-
gram analyses to statically analyze Android specific
constructs. BlueSeal statically generates per-app Flow
Permissions, and at installation time, it generates cross-
app Flow Permissions. We augment Android’s pack-
age installer to perform cross-app permission analy-
sis. We validate the feasibility and effectiveness of our
implementation by showing experimental results on a
Galaxy Nexus smartphone.

• Case Studies: Detailed performance analysis includ-
ing a comparison study with state-of-the-art tools, val-
idation against 96 known benchmark apps, manual in-
trospection, as well as a large validation across 2,992
popular and 1,047 malicious apps.

This paper is an extended version of our previous 6-page
ASE 2013 new idea paper [22]. Our previous paper intro-
duces Flow Permissions as a new permission mechanism and
shows preliminary results of BlueSeal. We extend our pre-
vious paper with a more thorough discussion of BlueSeal,
an augmented package installer, and new case studies, and
performance results.

2. OVERVIEW
In our previous new idea paper [22], we have discussed

the shortcomings of the current permission mechanism of
Android and proposed our new Flow Permission mechanism.
This section summarizes our previous paper.

2.1 Limitations of the Current Mechanism
In order to install an app on Android, a user needs to

explicitly grant one or more permissions requested by the
app. For example, Gmail, a popular mail client on Android,
requests many permissions such as INTERNET and STORAGE.
The INTERNET permission, once granted, allows the app to
send and receive packets over the network. The STORAGE

permission allows the app to read from and write to the
phone’s storage. There are other kinds of permissions such
as PHONE STATE, which allow sensitive, personal data to be
read and written, e.g., the phone number and the device ID.

This means that if a user grants a permission to read the
phone’s device ID and as well as access to the Internet, the
user is also implicitly granting permission to transmit the
device ID over the Internet to an external entity. In gen-
eral, once the app has permission to read from a given piece
of data stored on the phone (i.e. a data source) as well as
permission to send data outside of the app (i.e. a data sink),
the app also implicitly has permission to export the source
data via the sink. The problem is that the current per-
mission mechanism offers no insight to make the connection
between different permissions.

In addition, it is known that multiple apps can gain per-
missions implicitly without requiring users to explicitly grant
them [18]. This is possible since Android’s IPC mechanisms
do not necessarily check app permissions. For example, sup-
pose that app1 has permission to access the network, and
app2 has permission to read the device ID. In Android, app1

can expose its network access capability through an IPC
mechanism, allowing app2 to leverage app1 to send the de-
vice ID over the network without explicitly requesting the
network permission.

2.2 Flows as Permissions
The goal of the Flow Permission mechanism is to show

whether or not an app contains a flow between a source
and a sink. The general structure of a Flow Permission
is of source → sink. For example, if an app has a data
flow between the PHONE STATE source and the INTERNET sink,
then the corresponding Flow Permission is PHONE STATE →
INTERNET. This means that the app can potentially read
the phone state (e.g., the phone number) and subsequently
exports through the use of the network.

In this manner, Flow Permissions provide the user addi-
tional context on how the standard Android permissions and
the resources / data they protect are leveraged by the apps.
Nevertheless, it is up to the user to decide if these behaviors
should be allowed or not. The existence of a flow does not
indicate that the app is necessarily malicious. For example,
a social networking app might be expected to contain a flow
from the device ID to the network as this provides the app
a mechanism to uniquely identify the device for analytics.
Regardless, some users may not be comfortable providing
such information to the app developer, as other mechanisms
(e.g. manual login) can be used without exposing such data.

2.3 Flow Permission Mechanism
Flow Permissions are an extension to the Android permis-

sion mechanism that characterizes the implicit interactions
between data and APIs protected by standard permissions.
As described in the rest of the paper, we derive fine-grained
information flows using static analysis. We also derive cross-
app flows by combining per-app flows across different apps.
This is done by matching one app’s sinks to another app’s
sources.

We display these flows to users at installation time so that
users can examine the flows present in an app. Since it is
possible that an app has many flows, we categorize sources
and sinks into domains to reduce the number of flows that
need to be shown to the users. We currently have thir-
teen source domains: SMS, STORAGE, HISTORY BOOKMARKS,
USE DICTIONARY, FINE LOCATION, COARSE LOCATION, CAL-

ENDAR, ACCOUNTS, PHONE STATE, CONTACTS, CALL LOG, VOICE-
MAIL, and LOG. Similarly, we use five sink domains: NET-

WORK, LOG, MMS, STORAGE, and INTENT. Our previous paper
describes how we determine these domains [22].

3. BLUESEAL DESIGN
Our system, BlueSeal, depicted in Fig. 1, is comprised

of two main components, the static analysis engine—which
performs per app analysis offline, and the cross-app analy-
sis engine—which performs cross-app analysis at installation
time on the phone itself. Our static analysis engine is built
on top of the Soot Java Optimization Framework [33, 34].
Since Soot was originally developed for analyzing Java byte-
code, it was extended recently to transform DEX bytecode
into Soot’s own intermediate representation (Jimple), using
Dexpler [7]. We extend Soot to leverage the PScout Per-
mission Map [5]; abstractly, a permission map is a mapping
between Android API calls and the permissions required to
enact those calls. The PScout Permission Map was gener-
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Figure 1: The BlueSeal Android app analysis frame-
work architecture.

ated by statically analyzing the entire Android source code
and to our knowledge is the most complete among known
permission maps. Our compiler leverages this precomputed
mapping internally within the analyses to associate specific
permission to API calls.

At its core, BlueSeal leverages classic forward and back-
ward intraprocedural dataflow analysis as well as interpro-
cedural dataflow analysis based on graph reachability. Blue-
Seal leverages six main analysis passes to generate Flow Per-
missions: (1) entry point discovery, (2) call graph restruc-
turing, (3) unused permission analysis, (4) resolution of in-
tents, content providers, as well as uses of the binder, and
(5) interprocedural permission flow analysis. We augment
Android’s package installer to perform the 6th pass (cross-
app permission flow analysis) as described in Section 3.6.
Abstractly, BlueSeal uses analyses (2), (3), and (4) to dis-
ambiguate Android specific constructs and to identify source
and sink points, prior to tracking flows between sources and
sinks in analysis (5). BlueSeal implements Stowaway’s un-
used permission analysis [15] to remove unnecessary per-
missions. Since BlueSeal is built from classic analysis tech-
niques, we tailor our discussion on how to support Android
specific linguistic constructs, libraries, and IPC mechanisms
in standard analyses. Currently, BlueSeal is not path or con-
text sensitive, and is subject to the precision of the analyses
from which it is constructed.

Since our previous new idea paper [22] mainly discusses
analysis steps (1) and (5) (i.e., entry point and interpro-
cedural permission flow analyses), we omit the details here.
Briefly, our entry point discovery deals with the event-driven
nature of Android programming; we discover UI callbacks
(e.g., a button-click callback); we detect standard frame-
work components of Android such as Activity, Service,
BroadcastReceiver, and ContentProvider, that essentially
replace traditional main(). We have also crawled the online
API documentation of Android and discovered 1,738 call-
back methods that can serve as entry points (for API 17).

Our interprocedural flow analysis uses a fixed point algo-
rithm, leveraging the standard work list model and method
summaries. The method summary constructed during this
analysis is a flow graph representing the flows between sources
and sinks within the method itself as well as arguments, re-
turns, and class variables the method reads or writes. Once

public class MainActivity extends Activity {
    protected void onCreate(Bundle savedInstanceState) {
        ...
        new Task().execute("http://www...");
        ...
    }   
    ...
    private class Task extends AsyncTask<String, String, Integer> {
        ...
        protected void onPreExecute() {
            ...
        }
        protected Integer doInBackground(String... strs) {
            ...
            publishProgress("intermediate result");
            ...
            return intObj;
        }
        protected void onProgressUpdate(String...strings) {
            ...
        }

        protected void onPostExecute(Integer intObj) {
            ...
        }
    }
}

Figure 2: A code snippet illustrating the methods
that comprise the control flow of an AsyncTask in
Android and the implicit flow of arguments provided
by the Android framework.

MainActivity.onCreate()
...
Task.execute(…);
...

Task.onPreExecute()
...

Task.doInBackground()
...
publishProgress(…);
...
return val;

Task.onProgressUpdate()
...

Task.onPostExecute()
...

UI  Thread Implicit  Thread

Figure 3: The execution flow of AsyncTask methods
in their respective threads at runtime.

method summary construction reaches a fix point, we syn-
thesize a global flow graph from the per-method summaries,
giving us all potential flows across methods. Per-app Flow
Permissions can be generated from the graph by enumerat-
ing all paths and removing duplicates (e.g. an app may send
contact data over the network in multiple code blocks).

3.1 Call Graph Restructuring
The Android framework is responsible for invoking meth-

ods associated with many of the constructs it provides. To
correctly analyze an app, we must infer the association of
user-called methods to their corresponding framework-invoked
methods. We dicuss this in detail below.

3.1.1 AsyncTask
AsyncTask is a new threading class introduced in Android.

It provides a simple way to write a short-lived thread that
communicates with the UI thread in an asynchronous fash-
ion. An AsyncTask can implement five methods, onPreExe-
cute, doInBackground, onProgressUpdate, onPostExecute,
and onCanceled, which dictate the control flow of the asyn-
chronous task. As an example consider the code snippet in
Fig. 2 and the corresponding control flow given in Fig. 3.

The doInBackground method performs the actual compu-



public class HandlerActivity extends Activity {
    ...    
    private Handler mHandler = new Handler() {
        public void handleMessage(Message msg) {
            ...
            Bundle data = msg.getData();
            ...
        }
    };
    public void onClick(View v) {
        new Thread(new Runnable() {
            public void run() {
                try {
                    ...
                    msg.setData(data);
                    mHandler.sendMessage(msg);
                    ...
                } catch (InterruptedException e) {
                    ...
                }
            }
        }).start();
    }
}

(1)

(2)

(3)

(4)

(5)

Figure 4: Flows based on pairing message sends to
the appropriate message handlers.

tation for the AsyncTask. The methods onPreExecute and
onPostExecute run before and after doInBackground and
typically include pre- and post-processing. The onCanceled

method is called when the AsyncTask is canceled by an-
other thread. Notice that onPreExecute will execute in the
implicitly created thread backing the AsyncTask, but the
onPostExecute callback will be executed by the UI thread.
Similarly, onProgressUpdate gets executed as a callback in
the UI thread after there is a call to publishProgress within
doInBackground. An app writer can call AsyncTask’s exe-

cute and executeOnExecutor to start an AsyncTask. Obvi-
ously, a typical call graph generation process does not under-
stand this execution flow; hence, we identify all AsyncTask
instances and augment the call graph to include edges cor-
responding to the AsyncTask control flow. We do this by ef-
fectively replacing the invoke of execute with invoke calls to
onPreExecute, doInBackground, and onPostExecute. Sim-
ilarly, a call to publishProgress is replaced with a onPro-

gressUpdate call. Notice that doInBackground implicitly
passes its return value as an argument to onPostExecute.
publishProgress also passes its arguments as arguments to
onProgressUpdate. The call graph and method bodies are
updated accordingly.

3.1.2 Handler
Android also provides a message mechanism for commu-

nicating between threads within an app, called Handler (de-
picted in Fig. 4). Threads can communicate through a
shared Handler object. Receiving threads implement the
handleMessage method to process received messages and
sending threads communicate through the sendMessage*

family 1 of methods. Similar to AsyncTask, BlueSeal ef-
fectively replaces a call to sendMessage* with a call to han-

dleMessage to restructure the call graph.

3.2 Content Provider Resolution Analysis
After restructuring the call graph, BlueSeal performs ad-

ditional analyses to identify permission sinks and sources.

1By method family we mean any methods of similar form
defined by the same class (e.g. setData and setDataAnd-
Type belong to the method family setData*).

public class ContentProviderExampleActivity extends Activity {
    ...
    public void onButtonClick(View v) {
        Uri uri = ContactsContract.Contacts.CONTENT_LOOKUP_URI;
        ...
        processQuery(uri, ...)
        ...
    }
    ...
    public void processQuery(Uri uri, ...) {
        ...
        results = getContentResolver().query(uri, ...);
        ...
    }
    ...
}

PScout
Permission Map

CP Identity

Figure 5: The data flow of an URI object that identi-
fies which content provider is being utilized. Dashed
arrows indicate information derived from dataflow
analyses and block arrows how that information is
used to disambiguate the content provider.

public class UriExampleActivity extends Activity {
    private final Uri mUri;
    ...
    protected void onCreate(Bundle savedInstanceState) {
        ...
        mUri = buildUri("content", "edu.buffalo.cse.provider");
        ...
    }
    ...
    private Uri buildUri(String scheme, String authority) {
        ...
        Uri.Builder uriBuilder = new Uri.Builder();
        uriBuilder.scheme(scheme);
        uriBuilder.authority(authority);
        return uriBuilder.build();
    }
    ...
}

(5) (3)

(4)
(2)

(1)

Figure 6: The data flow of an URI object initializa-
tion that is resolvable statically.

One mechanism for interaction between apps is ContentPro-
vider. An app can provide content to itself or other apps
can consume content hosted by a content provider, or both.
Content providers are uniquely identified by a URI object
and to correctly pair uses of content providers, these objects
must be tracked and disambiguated to the extent possible
by static analysis. To identify uses of content providers, we
track the content provider API calls as well as the URI Ob-
jects (as shown in Fig. 5). Our Content Provider Resolution
Analysis (CPRA) is based on an interprocedural dataflow
analysis that leverages a backward intraprocedural data flow
analysis. Abstractly, we track backward flows from uses of
the content provider mechanism to the definitions of URI ob-
jects and from the definitions of URI objects to the strings
that uniquely identify them.

Content providers are accessed through two separate classes
in Android: ContentResolver and ContentProviderClient.
Within these classes the methods from which we begin track-
ing flows are: insert, query, and update. Each of these
methods takes an URI object as an argument. Our analysis
identifies the creation points of the URI objects passed into
these methods. URI objects can be created in one of two
ways: they can be provided by the Android libraries or they
can be constructed by the app itself. In the former, the



public class BinderActivity extends Activity {
    private BinderExampleBinder mBinder;    
    ...
    private ServiceConnection mConnection =
            new ServiceConnection() {
        public void onServiceConnected(..., IBinder service) {
            mBinder = (BinderExampleBinder) service;
        }
        ...
    };
    protected void onStart() {
        ...
        bindService(..., mConnection, ...);
        ...
    }
    public void onClick(View v) {
        ...
        mBinder.printStr("Test String");
        ...
    }
}

public class BinderService extends Service {
    private IBinder mBinder = new BinderExampleBinder();
    public IBinder onBind(Intent intent) {
        return mBinder;
    }
    public class BinderExampleBinder extends Binder {
        public void printStr(String str) {
            ...
        }
    }
}

(1)

(2)
(3)

(4)

Figure 7: Data and control flow relations between a binder activity and service.

identifying URI string is hidden. For precision, our anal-
ysis leverages PScout, which provides a mapping between
framework provided URI objects and their URI strings as
shown in Fig. 5. For app created URI objects we attempt
to discover this information in the compiler. Once the app
created URI object is identified, the analysis tracks the con-
struction of this object. There are two ways to construct an
URI object. One is to use Uri.parse and the other is to
use Uri.Builder. The first case is simple as the argument
to the parse method is the URI string. If Uri.Builder is
used, then Uri.Builder.scheme is used to set the scheme
and Uri.Builder.authority is used to set the authority.
For example, content://edu.buffalo.cse.provider, is a
valid content provider identifier where content is the scheme
and edu.buffalo.cse.provider is the authority. After the
scheme and the authority are set, the actual URI object is
returned by Uri.Builder.build. Thus, our analysis tracks
calls to scheme and authority and the arguments passed to
them as shown in Fig. 6.

3.3 Binder Resolution Analysis
Binder/IBinder, commonly referred to as just Binder, is

the default IPC mechanism on Android. It can be used for
inter-component communication within the same app (e.g.,
activity-to-service communication) as well as inter-process
communication between different apps. Android provides
multiple ways to use the Binder mechanism, such as simply
extending the base Binder class or using AIDL (Android
Interface Definition Language) to define a customized inter-
face. Regardless of which method is used, a Binder server
(i.e., an IPC callee) implements all the IPC methods in the
Binder class. A Binder client (i.e., an IPC caller) uses an
IBinder object which is the proxy for the server-side Binder.
Fig. 7 shows an example.

Although Binder calls are mostly identical to local calls,
there are two cases to handle for correctness of our analy-
sis. First, for inter-component communication, we need to
match each call with an IBinder object to the corresponding
Binder implementation. Second, for inter-process commu-
nication, each client-side IBinder call is a potential sink,
which might result in a server-side Binder call which then
becomes a potential source.

A variation of Binder is Messenger, which allows a pro-
cess to send a message to another process. It relies on

Binder/IBinder to implement its functionalities underneath,
but is simpler to use from the programmer’s point of view.
In order to receive a message, a server needs to create a
Messenger object; it also needs to implement a Handler as
described in Section 3.1.2 and pass it to the Messenger ob-
ject. In order to send a message, a client can use Messenger’s
send method. We handle these implicit calls by matching
calls to send with Handler’s handleMessage. If matches
cannot be enumerated we treat them as a potential sink (for
send) or a source (for handleMessage).

3.4 Intent Resolution Analysis
Intents are message objects that can be used to send data

between components within a single app as well as across
different apps. An app can receive intents in two ways, either
statically or dynamically. Static intents are declared in the
app’s manifest file on a per-component basis. An app can
also register itself to receive intents dynamically at run time
without declaring it in its manifest file.

BlueSeal performs Intent Resolution Analysis (IRA) in
much the same way as CPRA. Namely, it identifies pos-
sible sources and sinks related to the intents by examin-
ing relevant API calls such as put*Extra, setData*, get*,
send*Broadcast*, startActivity*, etc., that are capable of
reading from, writing to, sending, and receiving intents. In
general, handling intents more precisely is a much broader
problem and Octeau et al. [29] provide a mechanism for im-
proved precision. We are currently exploring how to inte-
grate their techniques into BlueSeal.

3.5 Repackaging the Application
Once the Flow Permissions are derived for an app, Blue-

Seal appends these permissions to the list of permissions
that the app requests. It does this by first extracting the
manifest file (AndroidManifest.xml) of the app and mod-
ifying it. It then repackages the application file (apk) for
distribution. Finally, it uses newly-added Flow Permissions
for display at installation time as well as for cross-app anal-
ysis done on a phone, described next.

3.6 Augmented Package Installer
In order to display Flow Permissions and perform cross-

app analysis, we have augmented Android’s package installer
in three ways. First, we have added all our Flow Permissions



Figure 8: Flow Permission example screenshot

to the source manifest file (the framework’s AndroidMani-

fest.xml) that the package installer accesses during instal-
lation. This is the global list of all permissions available in
the system. Second, we display our Flow Permissions by
modifying the package installer. Fig. 8 shows an example of
how we display Flow Permissions to users.

Lastly, we implement cross-app analysis in the package in-
staller in its PackageInstallerActivity. In our implemen-
tation we synthesize cross-app permissions by performing
all-to-all matching between all existing flows from already-
installed apps, and flows from the app being installed. For
example, while installing app2, if app1 (already installed) has
a flow from the device ID to a file, and app2 has a flow from
the same file to a socket, a new cross-app Flow Permission,
PHONE STATE → NETWORK, is created and displayed. A simi-
lar matching is done between the derived sources and sinks
of already-installed apps. For this analysis, our new pack-
age installer stores all permissions from all already-installed
apps in its storage. Our performance results in Section 4
demonstrate that our all-to-all comparison is still practical
and feasible to run on a smartphone.

4. RESULTS AND DISCUSSION
To validate our approach, we tested BlueSeal on 2,992 of

the top-rated free apps available on the Google Play Store,
with 571 apps from January 2013, 2,421 apps from Jan-
uary 2014, and on 1,047 known malicious apps from the
MalGenome Project 2 [40]. We ran BlueSeal on Amazon
EC2 [1] using an 13-ECUs and 4-vCPUs node instance with
15GB of RAM. In the set of apps, there are 107 apps not
analyzed because the Soot framework, which BlueSeal relies
on, threw exceptions when performing intermediate repre-
sentation transformation. BlueSeal, thus, was able to ana-
lyze 2,885 apps. Our full data set and results can be found
at http://blueseal.cse.buffalo.edu/data.html.

The main purpose of our evaluation is to assess the analy-
sis capability and usefulness of BlueSeal. We do this in four
ways. First, we present aggregated as well as categorized
statistics regarding information flows and Flow Permissions.
Second, we present the analysis performance of BlueSeal.

2http://www.malgenomeproject.org.

Results Overview Count
Total apps 2,885
Total number of raw flows detected 631,152
Avg number of raw flows per app 218.77
Distinct flows 2374
Total number of Flow Permissions 17,332
Avg number of Flow Permissions per app 6.01
Distinct Flow Permissions 431

Table 1: A brief overview of experiment results
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Figure 9: Distribution of Flow Permissions gener-
ated for each app. 630 apps do not generate any
Flow Permission and are not shown.

Third, we discuss the limitations of BlueSeal with manual
validation. Fourth, we show the usefulness of BlueSeal with
a user survey.

4.1 Statistics of Flow Permissions
Table 1 shows the overview of our results. Although we

detect many information flows in an app, the number of Flow
Permissions is significantly smaller due to our domain cate-
gorization (described in Section 2). Fig. 9 shows the distri-
bution of Flow Permissions generated by BlueSeal. Most of
the apps contain less than 15 Flow Permissions, an amount
practical for a user to examine. The app with the maximum
number of Flow Permissions (45) contains a heavy usage
of different content providers, currently distinguished based
on their URIs. We plan on categorizing content providers in
much the same way as permission domains. The app that
contains the maximum number of raw flows (13,646 flows as
shown in Figure 10) generates twenty Flow Permissions.

Table 2 shows the ten most common flows observed from
normal apps and Table 3 shows the ten most common flows
observed in malicious apps. From these two tables, we make
four observations. First, normal apps are more concerned
about users’ input data since most normal apps require a
user’s login information and many provide social communi-
cation functionality that requires a lot of user input. On
the other hand, malicious apps are heavily interested in
the phone’s unique identifier, DeviceId. Second, both nor-
mal and malicious apps read system content providers of-
ten. The most commonly accessed content provider in both
normal and malicious apps is the contacts. Third, normal
apps access the phones’ location data more frequently than
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Figure 10: Distribution of raw flows generated for
each app. (1046 apps range from 100 to 13,646 and
630 apps with 0 flow are omitted.)

Count Raw Flow
100379 EditText:getText→ Intent:putExtra
49910 ContentResolver:query→ Intent:putExtra
18512 EditText:getText→ Log:e
16937 Location:getLatitude→ Intent:putExtra
16756 Location:getLongitude→ Intent:putExtra
15135 EditText:getText→ Log:d
10660 ContentResolver:query→ Log:e
9191 Location:getLongitude

→ DataOutputStream:writeShort
9173 Location:getLatitude

→ DataOutputStream:writeShort
9053 EditText:getText→ PrintStream:println

Table 2: Ten most common flows in normal apps.

malicious apps. Fourth, most of the flows in normal apps
indicate that data is often used inside the app, while in ma-
licious apps data mainly flows to the network and storage.
This observation suggests that normal apps leverage the sen-
sitive data for debugging purposes while malicious apps may
store or send the data. Last, the two location flows in Ta-
ble 2 show that location is often sent within intents; this
is in fact a common design pattern that many developers
use. An app gets a location update, wraps it in an intent,
and sends the intent to itself to display the update. Blue-
Seal currently does not distinguish whether or not an app
sends intents to itself; it just detects that there is a flow to
an intent that gets sent out. To improve BlueSeal’s preci-
sion, we can leverage existing techniques such as the ones
implemented in Epicc [29].

In Tables 4 and 5, we collect top ten sources used by nor-
mal and malicious apps, respectively. As shown in these two
tables, there are three main categories of sources frequently
accessed by both normal and malicious apps—system con-
tent providers, phone identifier, and location. Specifically,
normal apps use the users’ location data while malicious
apps read the phone identifier and data stored in system
content provider, which is often private (e.g., contacts).

Table 6 and Table 7 show the top ten sinks present in
normal and malicious apps, respectively. We observe that
there are mainly three categories of sinks in normal apps:
log, storage, and intent. In malicious apps, the top sinks are
log, intent, storage, and network. Logging, which is used

Count Raw Flow
2757 TelephonyManager:getDeviceId→ Log:d
2577 TelephonyManager:getSubscriberId→ Log:d
739 TelephonyManager:getDeviceId→ Log:e
588 TelephonyManager:getDeviceId

→ HttpClient:execute
584 TelephonyManager:getDeviceId

→ ByteArrayOutputStream:write
569 ContentResolver:query→ Log:i
561 ContentResolver:query→ Log:d
507 TelephonyManager:getSubscriberId→ Log:e
476 TelephonyManager:getDeviceId→ Intent:putExtra
448 COntentResolver:query→ FileOutputStream:write

Table 3: Ten most common flows in malicious apps.

Count Source Type
205706 EditText:getText
123870 ContentResolver:query
77009 Location:getLatitude
76105 Location:getLongitude
43911 LocationManager:getLastKnownLocation
37561 TelephonyManager:getDeviceId
13820 FileInputStream:read
5816 AccountManager:getAccountsByType
4296 AutoCompleteTextView:getText
3815 TelephonyManager:getLine1Number

Table 4: Top-10 sources in normal apps.

for debugging purposes, is the most frequently used sink in
both normal and malicious apps.

4.2 Uses of the Statistics
Using these statistics, we can make observations about the

difference between malicious apps and normal apps in terms
of information flows. For this purpose, we have classified
malicious apps into different categories according to their
malware type, e.g., AnserverBot, BeanBot, DroidKungFu3,
DroidKungFu4, GoldDream, etc. We then examined what
common or distinct flows exist across the categories. A vi-
sualization of this data can be found for all categories at
http://blueseal.cse.buffalo.edu/flows.png.

With this flow analysis, we have discovered that there are
a few flows that highlight the difference between malicious
apps and normal apps. Table 8 shows the number of apps
in malicious and normal categories. It summarizes the flow
analysis result for one specific flow—the flow from Telepho-

nyManager:getLine1Number to (network)OutputStream:-

write. This flow is used to ex-filtrate the user’s phone num-
ber using Java’s Socket IO. We observe that this flow is only
used in 11 out of the 2198 normal apps which have more than
one flow. This flow exists with a much greater frequency in
the DroidKungFu3 and DroidKungFu4 categories. Further,
we have found out that 3 out of the 11 normal apps with this
flow have been removed from the Play Store since we orig-
inally downloaded them; these apps are com.SuperQiang.-

SexyGirlWallpaper.apk, com.SuperQiang.SexyGirlWallp-
aper3.apk, and Muli.touch.Sex10009.apk.

These individual flows can also be grouped to make a
more specific match. Table 9 shows the number of apps
in each malicious category and among all normal apps for
the flow pair from TelephonyManager:getLine1Number to
(network)OutputStream:write and the flow from Telepho-

nyManager:getDeviceId to HttpClient:execute. The for-
mer flow is the same flow that we used in Table 8. The



Count Source Type
6697 TelephonyManager:getDeviceId
4159 TelephonyManager:getSubscriberId
3939 ContentResolver:query
1190 Location:getLatitude
1188 Location:getLongitude
1169 LocationManager:getLastKnownLocation
1114 TelephonyManager:getLine1Number
1106 FileInputStream:read
883 EditText:getText
446 TelephonyManager:getCellLocation

Table 5: Top-10 sources in malicious apps.

Count Sink Type
221831 Intent:putExtra
56584 Log:e
48814 Log:d
41747 DataOutputStream:writeShort
30808 DataOutputStream:writeUTF
20801 PrintStream:println
20065 OutputStream:write
19590 DataOutputStream:write
15576 Log:i
14523 Log:w

Table 6: Top-10 sinks in normal apps.

latter flow sends the device ID over to the network with an
HTTP API. By flow pair we mean two flows that are held
within the same app. In this case, each app counted con-
tains a flow that is capable of sending the phone number
off the phone using the Java Socket IO methodology and is
capable of sending the phone’s device ID over the network
using Android’s HttpClient. We observe that this flow pair
is found in 6 out of 2198 normal apps which have any flow.
Three of these apps were the same three that had been re-
moved from the Play Store since our initial download. Of
the remaining three, one is the free version of a popular
guitar simulator app. The other two apps, com.applock1

and com.mm.security.androidhider1, require root access
and AVG Threat Labs indicate that they are malware. In
the DroidKungFu4 category, the flow pair was found with
the greatest frequency. More flows, in increasingly larger
groups, can be used to narrow down the likelihood of an
app being malicious, and possibly what malicious category
the app would pertain to.

Certain flows can be even more telling of malicious ac-
tivity. In many of the categories, flows with a source of
SmsManager:sendTextMessage were found to be malicious,
which can be seen in Table 10. One app in our normal group
that used this as a source stood out as well, com.bluecode.-
photo.space.effects.fx.apk. This app is stated to add
space effects to one’s photos, and this flow may be construed
as a way to send photos to friends via text messages. This
assumption would be false though, as photos need to be sent
via MMS using a built-in MMS app’s API. While we wanted
to test this app further, it has since been removed from the
Play Store, with AVG’s Threat Labs [2] reporting that this
app contained adware.

4.3 Performance
BlueSeal is able to analyze and synthesize per-app Flow

Permissions for all but the largest apps in under ten min-
utes. Only 163 apps require an analysis time greater than

Count Sink Type
6965 Log:d
2793 Log:e
1809 Log:i
1330 Intent:putExtra
1200 HttpClient:execute
1197 ContentResolver:insert
1176 ByteArrayOutputStream:write
973 OutputStream:write
939 Log:v
897 FileOutputStream:write

Table 7: Top-10 sinks in malicious apps.

Category Distinct Count Total Count
AnserverBot 1 172
BeanBot 7 7
DroidKungFu3 189 236
DroidKungFu4 73 82
GoldDream 3 40
Normal 11 2198

Table 8: Distinct malicious and normal apps us-
ing a flow, TelephonyManager:getLine1Number to (net-

work)OutputStream:write

ten minutes (all of these 163 apps finish under 30 minutes).
Fig. 11 shows the full performance results. However, Soot’s
front-end Dex bytecode parser, Dexpler, has limitations and
generates incorrect intermediate representations for 107 of
the apps. These apps are all from the Google Play store. We
are currently investigating the causes of the mis-translation
of the remaining 107 apps.

To measure the performance of our cross-app analysis,
we have tested the installation performance of BlueSeal’s
augmented package installer with 44 random apps. In our
experiment, we have installed each app on a Galaxy Nexus
phone, one app at a time, without uninstalling previously-
installed apps. We have measured the cross-app analysis
time as well as the total time until the installer displays the
installation screen. As Fig. 12 shows, it takes less than 2.1
seconds for all the apps to analyze cross-app permissions and
display the installation screen. Synthesizing cross-app flows
does not exceed 0.25 seconds for any of the app installs.

4.4 Manual Validation
False positives and false negatives are well-known lim-

itations of static analysis, which also apply to BlueSeal.
Thus, we manually validate BlueSeal in three ways to under-
stand its limitations. First, we have compared against Taint-
Droid [13]—a custom Android OS that performs a dynamic
taint analysis for identifying malicious flows. We have man-
ually compared BlueSeal’s generated Flow Permissions to
TaintDroid’s dynamically discovered taints on thirty apps.
Each app was manually executed for 15 minutes and fed ran-
dom key-presses. Unsurprisingly, the most common taints
reported by TaintDroid mirrored our own findings and that
of prior work. We have not discovered any taints reported
by TaintDroid for which BlueSeal does not generate a cor-
responding Flow Permission.

Second, we have randomly chosen and inspected 100 apps
that have exactly one BlueSeal-reported flow. We have ex-
amined each app’s intermediate representation of the source



Category Distinct Count Total Count
AnserverBot 1 172
BeanBot 0 0
GoldDream 3 40
Normal 6 2198
DroidKungFu4 72 82
DroidKungFu3 188 236

Table 9: Distinct malicious and normal apps using
a flow pair compared to distinct apps within a cat-
egory

Category Distinct Count Total App Count
Bgserv 1 1
CoinPirate 1 1
DogWars 1 1
DroidKungFu3 3 236
Endofday 1 1
Geinimi 4 25
GamblerSMS 1 1
GPSSMSSpy 6 6
NickyBot 1 1
Normal 20 2198
SMSReplicator 1 1
Walkinwat 1 1

Table 10: Distinct malicious and normal apps using
the SmsManager:sendTextMessage sink

and verified that BlueSeal detects actual flows in all 100
apps.

Lastly, we have vetted BlueSeal against DroidBench, an
Android benchmark suite with 64 apps provided by Flow-
Droid [4]. BlueSeal can detect all the flows in DroidBench
except implicit flows, since BlueSeal currently does not han-
dle implicit flows. In addition, there are several apps for
which BlueSeal reports false positives. This occurs for one
of three reasons—flows in dead code, lack of context sensi-
tivity, and flows in complex data structures.

BlueSeal reports flows in dead code since it does not per-
form any dead code analysis. BlueSeal simply relies on Soot
to determine code reachability. Also, BlueSeal is not cur-
rently context sensitive; for example, if there is a flow from
a source to a class variable, and another flow from the same
class variable to a sink, BlueSeal reports that there is a flow,
regardless of the relationship of the call sites in which those
flows occur. Lastly, if an app has a flow from a source to
a complex Java data structure such as HashMap, and a flow
from the same data structure to a sink, BlueSeal reports
that there is a flow. As a result, BlueSeal reports one flow
in 12 apps in DroidBench that do not have any flow.

4.5 User Study
To test the utility of Flow Permissions, we created a user

survey and tested graduate and undergraduate students tak-
ing computer science courses. These students are mixed
majors (CS and non-CS). Our survey results were obtained
anonymously with 540 participants. The survey procedure
is as follows. (1) The survey presented a description of an
anonymized app and its requested permissions. (2) Students
then responded how likely they were to install the app. (3)
The same question was asked including our Flow Permis-
sions synthesized for the app. (4) At the end of the survey,
the anonymized app was revealed and the students were once
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Figure 11: Scatter plot showing the time taken to
analyze all apps in seconds.
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Figure 12: Performance of our cross-app analysis.

again asked how likely they were to install the app. We re-
peated the survey for two apps, Twitter and DropBox.

Table 11 presents the results of our survey. The percent-
ages shown in the table show the likelihood of installation of
the app. The first column presents results of the anonymized
app with standard Android permissions. The second column
shows results for our Flow Permission mechanisms for the
anonymized app. The last column shows how the answers
change once the app name is revealed.

Our results indicate that Flow Permissions can signifi-
cantly impact user’s decisions to install an app when the
users are unbiased, i.e., when users do not have any precon-
ceived notions about the app or the developer of the app.
Flow Permissions have a minor impact on biased users. Al-
though these results are preliminary, they do give a positive
indication that Flow Permissions can be useful in a real-
world setting, especially when users are not familiar with an
app or its developer.

4.6 Threats to Validity and Discussion
We have used independent sources to obtain our testing

apps, which helps us to validate BlueSeal without much se-
lection bias. The first source is MalGenome Project that



App Name Android Flow Permissions Android
Anonymized Anonymized Named

Twitter 21 % 15 % 40 %
DropBox 37 % 15 % 35 %

Table 11: User survey result showing how likely the
user is to install the app.

provides 1,047 malicious apps. The second source is the
Google Play Store, where we downloaded 2,992 free apps.
These apps include top-rated apps from all categories and
randomly-selected apps. Selection bias can potentially come
from MalGenome project’s choice of apps as well as Google’s
categorization of apps. In addition, both CS and non-CS
majors are represented in our user study, which also reduces
the chance of selection bias.

5. RELATED WORK
The growing popularity of Android has resulted in many

tools, case studies, and analysis engines. CHEX [25] pro-
vides a tool for detecting highjack enabling flows within an
app. It is the first tool to tackle analysis of Android’s con-
structs such as AsyncTask and Handler, though it uses a
brute force permutation approach for matching call sites to
destinations. Our call graph restructuring described in Sec-
tion 3.1 can refine CHEX’s approach since we identify im-
plicit calls in Android’s constructs whenever possible. Xiao
et al. [36] propose a privacy-aware accesss control approach
based on information flows. They employs the user-driven
access control mechanism that allows users to choose among
real information, anonymized information, or abort execu-
tion to protect users’ privacy. Epicc [29] is another tool for
statically analyzing Android apps. Their focus is precise
analysis for intents to detect inter-component communica-
tion. They reduce the problem to an instance of the Inter-
procedural Distributive Environment (IDE) problem with
less false positive rates. AndroidLeaks [35] is a static analy-
sis tool implemented in WALA that can find leaks of sensi-
tive information sent over the network from Android apps.
It does not support analysis of AsyncTask, Intent, nor Con-
tentProvider and is unable to track cross-app flows. SCan-
Droid [20] first proposed a methodology for analyzing in-
tents statically, but was never tested on real-world apps.
The approach also required the original Java source of the
programs. Mann et al. created a framework to identify pri-
vacy leaks from the Android APIs [26], but the framework
has not been evaluated on real-world applications. Droid-
Checker [10] is a static analysis tool aimed at discovering
privilege escalation attacks and thus only analyzes exported
interfaces and APIs that are classified as dangerous. Scan-
Dal [24] is an abstract interpretation framework for tracking
information flows within apps. Currently, their framework
is able to track flows between location information, phone
identifiers, camera, and microphone exported to the network
and SMS. FlowDroid [4] is an extendable data flow detec-
tion system for Android. Our analysis techniques are com-
plementary to FlowDroid, as our techniques are designed to
handle Android constructs specifically. Dendroid [32] is a
tool used to automatically classify malware based on code
structures. AppProfiler [31] developed a knowledge base
with which to expand upon what applications are using the
permissions for, which they call behaviors. They present
informaiton on an applications behvaior to the user and re-

ceived anonymous feedback on whether the behaviors were
objectionable or not. A methodology for empirical anal-
ysis [6] was developed by this paper using self-organizing
maps to visualize the Android permission mechanism.

Besides static analysis tools, there is a plethora of tools
that perform dynamic analyses. Alazab et al. [3] provide
a dynamic analysis technique that runs apps in a sandbox
and can detect malicious apps. MockDroid [8] is a tool that
protects users’ privacy by supplying mock data instead of
sensitive data. Aurasium [37] provides user-level sandbox-
ing and policy enforcement to dynamically monitor an app
for security and privacy violations. CrowDroid [9] is an of-
fline analysis over traces that can be leveraged to identify
malicious apps through examining their behavior via crowd-
sourcing. Moonsamy et al. [27] provided a thorough inves-
tigation and classification of 123 apps using static and dy-
namic techniques over the apps’ Java source code. Grace et
al. [21] showed that ad frameworks opportunistically scan
and leverage permissions granted by the app they are called
from. AdDroid [30] introduced a new advertisement frame-
work with privilege separation, accomplished through a new
set of advertising APIs and permissions. We believe our
tool can be extended to analyze their framework through
extensions to the permission map BlueSeal takes as param-
eter. PiOS [11], a static analysis tool for iOS, leverages
reachability analysis on control-flow graphs to detect leaks.
AppIntent [38] instruments applications to provide GUI no-
tifications indicating the events that lead to data leakage.
VetDroid [39] a dynamic analysis platform designed to re-
construct permission use behaviors of Android applications,
specifically for malware analysis.

Although Android has a comprehensive permission mech-
anism, it has limitations. Most users do not understand
what each permission means and blindly grant them [12,
17]. These studies have shown that the Android permission
mechanism is not effective as a protection mechanism [16]
and suggest allowing users to grant permissions individu-
ally [28]; blocking and sanitizing sensitive data [23]; design-
ing an app verification mechanism [14]; and analyzing apps
to report over-privilege [15]. Fragkaki et al, [19] propose an
extension to the Android permission mechanism for disal-
lowing of flows of the form: disallow-flow(A,B), and shows
how interesting policies can be built on top of such a mecha-
nism. We believe our synthesized Flow Permissions could be
leveraged to conservatively check the adherence of an app to
such policies statically. Previous case studies [12, 17] have
reported that comprehension of permissions is reduced pri-
marily due to the “presentation” of the permissions and not
the mechanism itself. We believe our Flow Permissions can
benefit from new presentation styles as they are developed.

6. CONCLUSIONS
In this paper, we have presented a flow-based extension

to the Android permission mechanisms, called Flow Permis-
sions. We have detailed a comprehensive primer on And-
roid specific mechanisms and libraries in our description of
BlueSeal, an automated infrastructure for synthesizing Flow
Permissions. We have provided a comprehensive evaluation
of Flow Permissions in a wide variety of Android apps both
for single-app static analysis as well as cross-app analysis.
Our evaluation shows that BlueSeal is practical to deploy
and Flow Permissions provide visibility into the holistic be-
havior of mobile apps.
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