
BlueMountain: An Architecture for Customized Data
Management on Mobile Systems

Sharath Chandrashekhara, Taeyeon Ki, Kyungho Jeon, Karthik Dantu, Steven Y. Ko
Department of Computer Science and Engineering

University at Buffalo, The State University of New York
{sc296,tki,kyunghoj,kdantu,stevko}@buffalo.edu

ABSTRACT
In this paper, we design a pluggable data management solution
for modern mobile platforms (e.g., Android). Our goal is to allow
data management mechanisms and policies to be implemented
independently of core app logic. Our design allows a user to install
data management solutions as apps, install multiple such solutions
on a single device, and choose a suitable solution each for one or
more apps. It allows app developers to focus their effort on app
logic and helps the developers of data management solutions to
achieve wider deployability. It also gives increased control of data
management to end users and allows them to use different solutions
for different apps.

We present a prototype implementation of our design called Blue-
Mountain, and implement several data management solutions for
file and database management to demonstrate the utility and ease
of using our design. We perform detailed microbenchmarks as well
as end-to-end measurements for files and databases to demonstrate
the performance overhead incurred by our implementation.

1 INTRODUCTION
Mobile systems have gradually become the predominant platform
for everyday computing, and their computational, memory, net-
work, and storage capabilities are getting powerful by the day.
Apps on mobile systems span diverse categories such as games,
personal activity, banking, productivity, and business applications.
Consequently, mobile apps employ sophisticated data management
solutions, including local file and database storage as well as cloud
services for user/app data. These solutions enable desirable features
such as backup, sync, and sharing.

However, data management in mobile apps is currently rigid, and
does not provide enough flexibility for their developers and users.
Specifically, individual app developers need to make policy and
mechanism decisions on how user and app data should be managed.
Examples include, but not limited to, which cloud provider to use
for data backup (e.g., Dropbox vs. Google Drive), what policies
to use when transferring data over the Internet (e.g., only when
re-charging, only over Wi-Fi, etc.), and what mechanisms to use for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiCom ’17, October 16–20, 2017, Snowbird, UT, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4916-1/17/10. . . $15.00
https://doi.org/10.1145/3117811.3117822

synchronization (e.g., delta update, de-duplication, etc.). As a result,
developers have to spend additional effort in putting their data
management logic into each app, and users do not have any control
over how their data is managed. Some app developers expose these
decisions to users as configuration options, but those options are
typically limited. In short, current mobile apps have a tight coupling
between data management and app logic, which leads to added
development time for developers and inflexibility for users.

In order to overcome this problem, we envision a new ecosystem
where there are two kinds of apps. The first kind of apps are regular
apps that one can find currently from online app stores such as
Google Play. The second kind is what we call data management apps
that are also downloaded from online app stores. However, these
data management apps are meant to be pluggable and always used
in conjunction with regular apps for the purpose of managing their
data. A regular app delegates all its data management decisions to a
data management app, and users choose a data management app to
use for each regular app depending on their needs. For example, a
user in this ecosystem could install a regular note-taking app with
a data management app that backs up all notes to a public cloud. At
the same time, another user could install the same note-taking app,
but with a different data management app that uses a private cloud
instead of a public cloud. This new ecosystem achieves decoupling
of data management and app logic, and overcomes the current
limitation of rigid data management in mobile apps.

In order to make this vision a reality, we have built BlueMoun-
tain, a framework for pluggable data management apps on Android
that has three distinctive features. First, BlueMountain defines a
clean interface for data management apps, which mimics the in-
terface for Android’s filesystem, database, and key-value storage
(SharedPreferences). Using this interface, separate data manage-
ment apps can be written solely for the purpose of data management
such as backup, sync, and sharing. Second, BlueMountain enables
dynamic binding between a data management app and a regular
app, so that a user can choose which data management app to use
for each regular app the user has. BlueMountain achieves this by
dynamically loading a data management app’s code into a regu-
lar app, and redirecting the regular app’s storage calls to the data
management app’s code. Third, BlueMountain automatically trans-
forms existing apps to leverage BlueMountain’s functionality via
Java bytecode instrumentation. BlueMountain’s instrumentation
finds all uses of local storage APIs in an Android app (filesystem
APIs, database APIs, and SharedPreferences APIs) and trans-
lates them, so that it automatically uses BlueMountain-injected
code. This means that regular app developers do not need to bother
integrating BlueMountain for their local app data. Users can also
benefit from BlueMountain immediately as legacy apps can be

https://doi.org/10.1145/3117811.3117822

BlueMountain
Instrumenter

Translation
Layer

App Logic

App Logic

Data
Management

App 1

Translation
Layer

BlueMountain
Interface

Data
Management

App 2

BlueMountain
Enabled App

User A

User B

BlueMountain
Interface

A Regular App

BlueMountain
Enabled App

Public Cloud

Secure Cloud

App Logic
+

Data
Management

App Logic

Translation
Layer

BlueMountain
Enabled App

Figure 1: BlueMountain Workflow Example

BlueMountain-enabled automatically. Figure 1 shows a visualiza-
tion of the envisioned workflow with BlueMountain.

To demonstrate the usefulness of our system, we have built five
different data management apps, each of which implements one
strategy for managing regular app data. The first data manage-
ment app implements a personal data storage system, inspired by
PSCloud [2], which uses all of the user’s devices to store data. We use
WiFi Direct [40], local network, and the Internet to communicate
with a user’s mobile devices, desktop, and cloud, respectively. The
second data management app implements an efficient data synchro-
nization mechanism, inspired by QuickSync [8] and implements
file chunking to improve network utilization and reduce storage
footprint. Further, we implement three mechanisms to provide data-
base backup in the cloud. The first strategy locally logs all database
operations and remotely replays the log for data backup. The second
strategy divides a database file into multiple chunks, keeps track of
modifications made to each chunk, and backs up individual chunks
with new changes. This is inspired by the rsync library [31]. The
last strategy automatically performs database sharding on Android,
i.e., storing and managing each database table as a separate file.
This strategy can be used in conjunction with other strategies for
more efficient database backup.

In order to evaluate BlueMountain, we measure the overhead
using microbenchmarks as well as the five data management apps
described above. Our results show that the performance degradation
is minimal (<10%) in most of the cases and stays less than 30% even
in the worst case. This can be further reduced by using a more
efficient memory management in our system.

We also have downloaded 400 apps from Google Play and auto-
matically transformed them to leverage BlueMountain. Our instru-
mentation results show that BlueMountain’s instrumentation does
not incur much overhead in terms of code size increase (<12%),
heap usage (<16%), and energy usage (<3.5%). We have also tested
the correctness of our instrumentation via an automated UI testing
system and verified that BlueMountain’s instrumentation neither
crashes apps nor throws new exceptions.

In summary, we make the following contributions:

• We show that it is feasible to decouple data management and
app logic for mobile apps. We do this by proposing a new

Android
Platform

Storage API

Storage
API

Translation
Layer

Android Platform

Original App
Logic DM App

BlueMountain Framework

Platform

BM
Interface

App
Android

Calls
Android

Calls

Original App
Logic

Figure 2: BlueMountain System Overview

framework that enables the decoupling, as well as showing
that the framework incurs minimal overhead.
• We demonstrate that the decoupling is useful by creating

five data management apps and showing their practical per-
formance. This includes re-implementing two file-based so-
lutions previously proposed for mobile systems.
• We show that our approach supports existing apps by auto-

matically transforming 400 apps downloaded from Google
Play to leverage our framework and verifying the correctness
of their functionality.

2 BLUEMOUNTAIN DESIGN OVERVIEW
BlueMountain is designed with three goals in mind—decoupling of
data management and app logic, supporting widespread deployment,
and supporting legacy apps. We overview these goals and our design
in this section.

2.1 Data Management and App Decoupling
Figure 2 shows how BlueMountain decouples data management
and app logic. Shown on the left is a regular Android app that
uses the Android storage APIs to store data locally. Shown on the
right is the architecture enabled by BlueMountain that has a sepa-
rate data management app. BlueMountain defines a clean interface
(which we call the BlueMountain interface) that data management
app developers use to provide their data management solutions.
BlueMountain also has the translation layer, which translates all

Android storage APIs into the BlueMountain interface and redirects
all storage API calls to a data management app. We note that for
each regular app, we dynamically load a data management app’s
code into the same address space of the regular app. Figure 2 shows
a regular app and a data management app side-by-side only to high-
light our logical decoupling. It is not meant to show that they run
as separate processes. Section 3 details the BlueMountain interface
as well as the translation layer.

This design provides two benefits that overcome the limitation
of the rigid data management that current mobile apps experience.
First, it simplifies development for regular app developers since they
do not need to implement various policies and mechanisms for
data management. They can focus on their app logic and delegate
the complexity of data management to separate data management
apps. Second, it provides flexibility to users since users can choose
different data management apps depending on their needs. This is
possible since BlueMountain allows the binding between a regular
app and a data management app to occur at use time instead of
development time.

2.2 Supporting Widespread Deployment
BlueMountain supports widespread deployment by restricting all
its implementation to take place within individual apps. This means
that we do not modify anything in the Android platform—this is
because modifications to the Android platform are tightly regulated
by Google as well as other mobile platform vendors such as Sam-
sung and Amazon. If any platform modification were to be required
for BlueMountain, we would need to rely on Google or other ven-
dors to approve the use of our system and properly distribute it,
which is impractical. In contrast, if all modifications were restricted
to individual apps, we could widely distribute our system by using
an online app store such as Google Play. Therefore, BlueMountain
restricts all modifications to be self-contained in individual apps and
makes no changes to the Android platform.

2.3 Supporting Legacy Apps
Android is a popular platform for app development, and many
app developers are now used to its programming model and inter-
faces for app design. If we were to require app developers to use a
new storage interface for BlueMountain, it would involve learning
and hinder the pace of development. Further, previously-developed
apps would need to be re-written using the new interface, which
puts an excess burden on the developers. To mitigate both of these
challenges, we use Java bytecode instrumentation to automatically
transform an app to leverage BlueMountain. For this purpose, we
use Reptor [23], a tool that enables automated API class replace-
ment for Android apps. Reptor takes an app binary, decompiles it,
performs program analysis, correctly replaces Android API classes
with custom classes, and recompiles it into a new app. This makes
the process of replacing Android storage APIs with BlueMountain
APIs seamless and transparent to regular app developers.

We now describe the BlueMountain system implementation.

3 SYSTEM IMPLEMENTATION
The BlueMountain architecture is shown in Figure 3. Any app that
wishes to use our system has to include our framework within the

Pluggable DM

Android Platform

BlueMountain Framework

File
Interface

Dynamic Class
Loader

Database
Interface

Dynamic
Configurations

Translation Layer
Database

APIs

Shim
MetadataShared

Preference APIs 3rd Party
APIs

File
APIs

App

Figure 3: BlueMountain System Architecture

app and use our interface for all data storage functionality. For this,
we provide a modular implementation of our framework that can
be used as a library. Given such a library, we use an instrumentation
tool (Reptor [23]) to automatically inject the whole BlueMountain
framework into existing apps without developer’s intervention.
This allows the existing apps to easily benefit from BlueMountain.

As described earlier, the BlueMountain framework dynamically
loads a data management app’s code. We define a clean interface
for a data management app to implement, and our translation layer
translates all Android storage API calls to the calls to our own
interface. Below, we first describe our BlueMountain interface. We
then describe our translation layer. Lastly, we describe how we
inject the BlueMountain framework and dynamically load a data
management app’s code.

3.1 The BlueMountain Interface
We define a clean interface for data management apps which mim-
ics the three storage options that Android provides. They are (a)
files, (b) databases, and (c) key-value stores called SharedPrefe-

rences. The reason why we mimic Android’s storage options for
our interface design is to allow data management app developers
to provide customized solutions for different storage options avail-
able on Android. BlueMountain intercepts all calls to these storage
options and translates them into our own interface calls, so that
the data management apps can handle them.

Table 1 describes our interface for data management apps. We
design our interface using objects as our storage abstraction instead
of files, which helps us keep our interface design simple. Our data
objects are of a fixed size, but it can be configured by the individual
data management apps. By default, we use 4MB, which is a typical
choice for cloud vendors like Dropbox [11]. This means that if an
app stores a single file, BlueMountain divides into multiple 4MB
chunks. Below, we discuss how we use the object abstraction in our
interface that mimics the Android storage APIs.

Files: We provide a simple CRUD interface for the data manage-
ment apps that wish to manage files. Our read and update interfaces
include two optional parameters to indicate the offset within the
object and the requested length. This allows our interface to mimic
Android APIs when apps want to optimize operations on files. Gen-
erally, the flush operation on a FileIOStream is a NOP. However,
apps can force a fsync using low level Java constructs like File-
Channel or FileDescriptor. To support this behavior, we add

Type Interface In Out Description
Fi

le
:C

RU
D

fcreate id, buffer[],
length

none Creates an object id of size length from buffer bytes

fread id, buffer[], [offset,
length]

buffer[] Reads data from object id into buffer. offset and length are optional param-
eters indicating the offset within the object and the length to read

fupdate id, buffer[], [offset,
length]

none Updates the object id with buffer bytes. offset and length are optional
parameters indicating the offset within the object and the update length

delete list: id none Deletes all objects in the list

Fi
le

:S
ta

te

close list: id none Indicates operations on all objects in the list is completed

flush list: id none Flushes all objects in the list to a persistent storage

initFS none none Initializes the system

clearFS none none Deletes all the data and formats the system

D
B:

St
at

e open db-path, flags cnx-id Opens the database in db-pathwith the provided access flags in flag and returns
the connection id cnx-id

close cnx-id none Closes the previously opened connection cnx-id

cancel cnx-id none Cancels the current operation on the connection cnx-id

D
B:

Ex
ec

ut
e executeWrite cnx-id, SQL-String,

args[]
rows Executes statement SQL-String which modifies database, with args an Object

array of bind arguments, on connection cnx-id. Returns rows, a row id or number
of rows modified

executeQuery cnx-id, SQL-String,
args[]

Cursor Executes SQL-String query with args as an Object array of bind arguments,
on the connection cnx-id. Returns Cursor for the result.

D
B:

In
fo statementInfo cnx-id, SQL-string Info Returns information about statement SQL-String on connection cnx-id in an

Info Object

Table 1: BlueMountain Interface for Data Management Apps

flush to our interface. Since the app calls flush at the file level, this
may affect all the objects belonging to a file, including the meta-
data file. Therefore, our flush operation takes a list of object ids
which have to be flushed. Similarly, we include close as part of
our interface. This provides a mechanism to indicate to the data
management app that the app is done operating on the object, it
can release the resources and flush it to a persistent storage.

Databases: To support databases, we provide open, close and
cancel methods in our interface. Open returns a connection ID
which all the subsequent calls should use to perform operations
on the same database. For the execution of a database operation
(e.g., insert, update, delete, query, etc.), we provide two methods—
executeWrite and executeQuery. executeQuery is used in queries,
executeWrite is used for insert, delete, and update operations and
all other SQL operations. These two methods accept a raw SQL state-
ment string as a parameter, which provides the most flexibility for
a data management app in handling SQL operations. The state-
mentInfo method allows us to get useful information about a SQL
string from the database such the number of columns, the column
name, or if a particular query is a read-only query.

There are certain types of database APIs that our current interface
does not support—(1) APIs for controlling database queries issued
from multiple threads, (2) APIs for compiled SQLite statements,
and (3) APIs that use an app-provided CursorFactory, which
handles query results in a customized fashion. These features are
not essential for using a database but rather provide more support for
app programmers. For example, multi-threading support provides

an easier way to control queries that are executed in parallel from
different threads; compiled SQLite statements make it easier to reuse
frequently-issued queries; and CursorFactory provides support
for customized output access. For each of these features, there are
alternative ways for app programmers to accomplish the same
tasks.

We can still support these features by adding them to our inter-
face. However, our current prototype does not support them in the
interest of keeping our interface clean and simple. Adding these
features to our interface means that each data management app will
need to support the features. For example, in order to support multi-
ple threads, a data management app should be able to handle queries
properly even if they are issued by multiple threads. Similarly, in
order to support compiled SQLite statements, a data management
app should be able to generate compiled SQLite statements even
when it does not use a SQLite database underneath.

In Section 5.4, we present our detailed analysis on how many
apps use these features.

SharedPreferences: SharedPreferences on Android is im-
plemented as an XML file and is typically a small file where apps
store key-value pairs like user settings. We can treat the XML file
as any regular file and use our file interface to read and write the
SharedPreferences file through the data management app. Thus,
we do not provide a new interface to deal with SharedPrefer-

ences.

3.2 BlueMountain Translation Layer
The translation layer translates the Android Storage API calls into
the BlueMountain interface calls. It is either directly built into an
app (for newly-developed, BlueMountain-aware apps) or injected
into it at a later stage (for legacy apps). Architecturally, we separate
the translation layer from the rest of the framework. This is because
this design enables third party data management libraries to be
plugged into our system if they can provide a translation from their
APIs into BlueMountain APIs. Below, we discuss the strategies for
translation we have used for Android storage APIs.

Files: The translation layer needs to translate the Android file
operations into the CRUD interface shown in Table 1. The files
on Android are accessed through the following classes—FileIn-

putStream, FileOutputStream, FileReader and FileReader

for sequential access; RandomAccessFile for random file access;
File for metadata, FileDescriptor, FileChannel as low level
representations of a file and FileLock for locking. This requires
us to translate the streaming I/O model into an object-based model.
We have developed wrappers around the FileInputStream and
FileOutputStream, which translates the calls to an object based
I/O. As mentioned earlier, we have chosen the default object size
to be 4 MB, but this is a configuration parameter. Therefore, the
translation layer also needs to break down files larger than 4MB
into objects of 4MB chunks.

This also requires us to maintain mappings from files to objects
as metadata. The metadata itself can be treated as an object and
stored persistently using the same data management app that is
plugged into the app. Since object size could have a significant
impact on performance, we allow the data management app to
change the default object size according to its design.

Our current interface translation supports most file operations
on Android. However, there are some obscure lower-level represen-
tations of files through the FileChannel and FileDescriptor

classes that we currently do not handle. Our preliminary examina-
tion of real apps suggests that most apps do not use these interfaces
for data management. Therefore, we leave the handling of these
interfaces as part of our future work.

File Metadata: Apart from metadata file which maintains the
mapping from files to objects, we need a mechanism to deal with
the system metadata as well. This includes all the operations from
the Java File interface. Moving the management of this metadata
to the data management app makes the design more complex, and is
not particularly advantageous. Therefore, in our design, we let the
Android framework deal with the filesystem metadata. For example,
operations such as creating directories, empty files, maintaining
access times of files, directory structures, permissions, etc., are left
to the Android system. We do this by creating the entire directory
structure with empty files using the Android platform interface
whenever a file is accessed through the BlueMountain translation
layer. Thus, while the translation layer through the BlueMountain
framework delegates the responsibility of handling the file data to
the data management app, the associated metadata is maintained
locally.

Databases: In order to use a SQLite database, apps use the SQLi-
teOpenHelper and the SQLiteDatabase classes to open and issue
requests to the database. These app-facing classes provide a variety

IO Processor Database
Processor

Read
Queue Cache

BlueMountain DM

Write
Queue

BlueMountain
API

User Facing
Functionalities

BaseActivity

Runtime
Configuration

Figure 4: BlueMountain Data Management App SDK

of functionality not just to read and write from the database but
also to perform database management. In our design, we intercept
calls to these classes and translate them into our own.

For the Android database APIs that ultimately issue a database
operation (e.g., insert, update, delete, query, etc.), we interpret
and translate them into raw SQL strings and invoke either ex-

ecuteWrite or executeQuery (which we discuss in Section 3.1).
SharedPreferences: To handle SharedPreferences, we provide

wrappers to access and edit the SharedPreferences and notify the
data management app of any changes made to the corresponding
XML file. While serving the reads, we check if the SharedPreferences
file has been updated outside of the app, and if it is, we simply reload
the SharedPreferences file.

3.3 BlueMountain Data Management App SDK
In order to support the development of a data management app, we
have developed an SDK which provides common functionality and
a base implementation for all APIs. Any data management solution
that wishes to override the default behavior can override one or
all the methods of the SDK or can simply extend the functionality
that is provided. Figure 4 shows an overview of the SDK and the
modules. For files, the base implementation writes all operations
to the local storage cache with a FIFO policy, and adds them to
the write queue. It also serves the reads from the cache, raising
an exception when data is not found. The requested object is then
added to the read queue. A background thread dispatches these
requests to the I/O processing queue. The data management apps
need to extend the I/O processor to handle these requests. For
databases, the base implementation uses a local database as a cache
and the data management apps have to override this behavior to
provide additional functionality.

The SDK also provides a BaseActivity—a UI which identi-
fies a set of BlueMountain enabled apps installed in the system
and lets the user choose a regular app to which the data manage-
ment app has to be plugged. A data management app can extend
this functionality to enable runtime configurations. The data man-
agement apps can pass on these runtime configurations to the
BlueMountain framework (running within the regular apps) using
Androids Intents. The data management app might also imple-
ment other user functionality that allows users to modify some of
these configurations—for instance, an interface that allows users to

provide access to a particular cloud account or an interface to set
the network data limit.

Our current version of SDK provides an implementation to han-
dle object chunking, data caching, and a client to access cloud
servers over a REST-based interface. In the future releases, we in-
tend to add more functionality to the SDK to aid the development
of data management apps.

3.4 Dynamic Loading and Instrumentation
At run time, we enable the data management apps to be plugged
into any regular app having the BlueMountain framework. We
achieve this by dynamically loading the data management app’s
code into the regular app. We use DexClassLoader, a Java class
that Android provides, which allows an app to dynamically load
another app’s code. Once loaded, we use Java reflection to invoke
data management app code. Such a mechanism binds the data
management app with the regular app at runtime allowing the
user to configure any regular app with a data management app
of her choice. The overhead due to reflection can be mitigated by
using a pre-defined interface and invoking the data management
app methods through this interface. As we show in Section 5, the
overhead due to reflection did this way is fairly minimal.

If a regular app is not compiled with the BlueMountain frame-
work, we need to inject the BlueMountain framework into the app
before a data management app can be plugged into it. We use Rep-
tor [23] for this purpose. Reptor enables API class replacement for
an Android app—a developer can replace an API class (such as
FileInputStream) with a custom class that the developer writes.
Thus, we use Reptor to replace all storage API classes with our own
classes, which redirect all storage API calls to our translation layer.

4 PLUGGABLE DATA MANAGEMENT APPS
In this section, we discuss the design and implementation of five
pluggable data management solutions built using our SDK and Blue-
Mountain framework. We discuss two solutions that handle files
and three solutions that handle databases. Our intent is to demon-
strate the ease of implementing data management solutions using
BlueMountain. Our first two data management apps are based on
two previously published systems, PSCloud [2] and QuickSync [8].
For databases, we implement three strategies for efficiently syn-
chronizing an Android app database with the cloud as separate data
management solutions for databases. The key-value store is stored
as a file. One of the two data management solutions for files can be
used for the key-value store as well.

4.1 Personal-Device Cloud
Our first use case system is a data management solution for personal
storage cloud inspired by PSCloud [2]. Briefly, PSCloud envisions
the use of storage on all mobile devices of a single user, along
with home servers and cloud storage services. It creates a single
unified personal storage system where data is automatically cached,
replicated, and placed to enable reliable access across all devices.
It also minimizes network access and storage costs using a per-
device network context graph that tracks connectivity relationships
between a user’s devices.

Inspired by the design of PSCloud, we have implemented a data
management app that is capable of performing file transfers using
three mechanisms—WiFi Direct (i.e., peer-peer wireless link be-
tween devices), desktop sync (i.e., local network access to desktop
when possible), and Dropbox sync (i.e., cloud access when network
connectivity is available). Our current implementation employs a
simple file placement algorithm—a file is copied to other devices
based on a device priority list. Currently, we give other mobile de-
vices the highest priority. If no device is found, the system attempts
to copy the file to a desktop. If that is also not available, the user’s
Dropbox account is used for backup (when network is available).
Although we have implemented this policy based on the brief de-
scription from PSCloud [2], the file placement algorithm itself is
orthogonal to our objectives and more sophisticated techniques can
be implemented using our framework for improved efficiency. Once
again, our intent is to demonstrate the feasibility of implementing
previously proposed mobile data management systems using the
BlueMountain framework.

4.2 Efficient Data Synchronization
Our second data management app is an efficient cloud data syncing
system inspired by QuickSync [8]. QuickSync uses strategies such
as chunking, bundling, delta encoding, de-duplication, and data
compression to create an adaptive chunking and de-duplication
strategy based on network conditions. Its goal is to reduce network
traffic and have uninterrupted data syncing. It uses separate data
and control servers. Inspired by QuickSync, we have implemented
a data management app that efficiently syncs files by breaking them
into finer chunks, and use a local Desktop as a control server to
store metadata and Dropbox as a public cloud data server. Though
chunking is just one of the optimizations provided in QuickSync,
our simplified implementation demonstrates the ability to develop
a system like QuickSync as a pluggable data management app for
BlueMountain framework. Again, we do not attempt to replicate all
of the advanced algorithms described in the original work as they
are orthogonal to our design objectives.

When QuickSync is implemented as a data management app, it
receives explicit notifications from the BlueMountain framework
whenever an object is modified or read. In our implementation,
when we receive a create notifications from the BlueMountain
framework, we split the object into multiple chunks, update the
metadata server with this information, and upload the chunks to
the cloud. On read notifications, we first fetch the metadata and
then fetch the required chunks if it is not present in the local cache.
This differs from the library implementation where the reads will
be directly handled by the Android framework. Similarly, on update
notifications, only the affected chunk is uploaded and the metadata
is updated.

4.3 Database Management
Our next set of data management apps are implementations of effi-
cient backup mechanisms for databases. There are various libraries
which assist in backing up databases ranging from transferring the
database as a JSON string to using a rsync-like library to contin-
uously back it up in the cloud. A sync library should be fast and
efficient in using network bandwidth and energy. We implement

three approaches for backing up the database with the cloud, each
one designed as a data management app.

Log and Replay: Our first app for backing up a database to
a server is to log all SQL statements on the mobile device and
reconstruct the database on a server by replaying the logs. On the
execution of every SQL statement, we synchronously log the SQL
statement into a journal file. A background thread which monitors
this file uploads file updates to a server. The server, after reading
the statements, replays them on its SQLite server to recreate the
database. Whenever there is data loss or when the user wants
to restore to a previous version of the database, we can simply
download it from the server and use it. Our current implementation
of this works as a sync-only system, where we still maintain a local
copy of the database and serve all the queries through it.

Backing Up The Database File: In our second database man-
agement app, we implement an approach similar to librsync, where
we break up the database file into multiple virtual chunks. We mon-
itor the database for every change, identify the chunk that was
modified using a hashing function and upload that chunk. On the
server side, we reconstruct the original database by merging the
chunks. While we have used this approach as an example for data-
base backup, this can be a light-weight solution to backing up any
file between the device and the cloud.

Multiple Databases: In our third database management app,
we split the database into multiple databases, each containing just
one table. This is commonly referred to as database sharding in web
services domain. Separate database files are created whenever a new
table is created with the corresponding table in it. SQLite supports
the SQL ATTACH which lets multiple databases to be accessed as
one virtual database through a single connection. Using this, we
attach all the databases, each containing one table and access it
through a single virtual connection. SQLite can support up to 10
attached databases and can transparently handle modifications to
the table.

The biggest advantage of this approach is that an update on a
table will modify only the corresponding database file, and other
database files will be untouched. This would enable us to use other
back up mechanisms more efficiently as the database files are now
smaller and updated independently. To enable this, our implementa-
tion starts with one database for the first table created and examine
the SQL operations. On every create table operation, we create a
new database and attach it to the existing database. One compli-
cation in our implementation is that this approach cannot handle
foreign keys from different tables due to limitations of SQLite; tables
with a foreign key relationship cannot be placed in two different
database files. Thus, our implementation detects foreign key rela-
tionships between any two tables, and whenever a new table is
created, we insert the table to the same database file that has the
corresponding foreign key table.

5 EVALUATION
We evaluate BlueMountain in four aspects. The first is performance—
we use microbenchmarks to show that BlueMountain incurs very
little overhead (Section 5.1). The second is usefulness—we measure
the performance of our prototype data management solutions for
both files and databases, and show that they provide comparable

performance to current Android storage APIs (Section 5.2). The
third is support for automation—we inject BlueMountain into 400
existing apps, show that they work correctly under our testing sce-
narios, and report instrumentation statistics as well as energy and
heap consumption for some of the well-known apps (Section 5.3).
Lastly, we analyze 2000 apps and provide an insight into impro-
vising the support for databases (Section 5.4). All our experiments,
except when noted, were conducted on Google Nexus 5 phone,
running Slim Rom [30] version of Android 6.0.1 (API 23).

5.1 Microbenchmarks
We first measure the performance of BlueMountain using microbench-
marks. As BlueMountain framework introduces multiple layers, we
expect some performance degradation compared to directly us-
ing the Android APIs. The overhead can occur at two layers. First,
due to our API translation layer, every storage API gets translated
to our APIs. We call this overhead the framework overhead (“B
framework” in the plots). In order to quantify this overhead, we
intercept all storage APIs and translate it into our APIs, but instead
of redirecting the calls to a pluggable data management app, we
directly perform local I/O within our system. This also serves as a
default data management policy when a user does not install any
data management apps.

The second overhead is due to invoking a pluggable data man-
agement app. As we use Java reflection in this layer, we expect to
have some overhead. We call this the pluggable system overhead.
In order to quantify this overhead, we create a data management
app which just uses the local storage on the phone through the
Android Storage APIs and perform our measurements. This over-
head indicates the base overhead incurred by any pluggable data
management app (“DM App” in the plots).

Sequential I/O: In this section, we evaluate the overhead of
BlueMountain for sequential file I/O. Figures 5 and 6 shows the
total time taken for writing and reading files of 5 different sizes
plotted as a CDF. 1 “Native” is the I/O performance through An-
droid storage API classes, FileInputStream and FileOutputSt-

ream. Once again, “B Framework” indicates the performance of
the BlueMountain framework and the translation layer, and “DM
App” indicates the performance over a plugged in data management
app. We conducted the experiments by measuring the average time
taken for write/read for files of different sizes over 1000 iterations.
We have used an object size of 4MB for our translation layer. This
parameter can be configured by the pluggable data management
app and our system used 4MB as the default settings. We study
the impact of this object size in Section 5.1. Our write tests include
flushing the data to persistent storage, while we use warm cache
for our read performances. Photos and videos which are the most
common type of data on mobile apps mainly use sequential I/O.
Thus our tests are reflective of the performance we can expect on
real apps. The performance numbers show that BlueMountain in-
curs minimal overhead over the native storage APIs. Further, we
can see that the pluggable layer barely has any overhead above the
framework overhead and has an almost-identical performance. This
is because the two experiments are functionally equivalent as the

1We have also conducted the same experiments for file sizes up to 100MB, and the
performance had the same pattern; thus, we do not include the results here.

0 2 4 6 8 10 12
Running Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Native
B Framework
DM App

0.5 1.5 2.5 3.5
Running Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14
Running Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45
Running Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100 120 140
Running Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: CDF: Sequential Writes with Various File Sizes, 4KB, 20KB, 100KB, 1MB, and 4MB (left to right)

0.0 0.5 1.0 1.5 2.0 2.5
Running Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Native
B Framework
DM App

0 1 2 3 4 5 6
Running Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14
Running Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35
Running Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90
Running Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: CDF: Sequential Reads with Various File Sizes, 4KB, 20KB, 100KB, 1MB, and 4MB (left to right)

4KB 20KB 100KB

5000

15000

IO
PS

Native
B Framework
DM App

1MB 4MB 10MB

5000

15000

25000

Figure 7: 4K IOPS for RandomWrites

overhead of reflection is mitigated due to the use of our pre-defined
interface as described in Section 3. The higher overhead for larger
files is likely due to a higher memory pressure on the system; our
current implementation allocates one large memory chunk for all
data and does not perform any optimization. We expect that our
future implementation can optimize this further.

Random I/O: In our next measurement, we evaluate our system
against random I/O operations. We measure the number of IOPS
by issuing I/O operations at a size of 4KB, which is typically the
smallest size an app would read/write from/to a filesystem (4KB
is the default block size of the ext4 filesystem—Android’s default
filesystem). Like the previous experiment, we measure the IOPS for
files of different sizes over 1000 iterations and then calculate the
average and standard deviation. Although random file access is not
as common as streaming I/O, they are still used by plenty of apps,
typically for accessing a documents or data files. BlueMountain’s
random access interface is based on Android’s RandomAccessFile
API. We measure the overhead of our system and compare it with
the performance of when RandomAccessFile is directly used. Fig-
ure 7 and Figure 8 shows write and read IOPS respectively and

4KB 20KB 100KB

10

30
IO

PS
(K

)

Native
B Framework
DM App

1MB 4MB 10MB

5

15

25

35

Figure 8: 4K IOPS for Random Reads

compare Android’s native performance, BlueMountain framework
performance and the pluggable data management’s performance.
We incur some overhead on random access compared to the na-
tive performance. This is because Android’s RandomAccessFile
directly uses the low level file primitives while we build the random
access support on top of a object based model. This means random
writes on BlueMountain will results in updates to the object, which
are typically slower. This is an optimization problem rather than
an architectural limitation. For instance, in a app which primarily
uses random I/O a much more optimized update which can handle
small random I/O can be implemented by using techniques like
chunking. The performance can also be improved by tuning the
object size of the BlueMountain layer. As this parameter config-
urable, it enables the data management app to choose the best size
depending on the targeted workload.

Effect on Object Size: As discussed in our system architecture,
we divide large files into smaller objects of a particular block size.
The choice of this block size will have an impact on the I/O per-
formance. To measure the impact of the block size on the system
performance, we vary the block size between 256KB and 8MB and

0.250.5 1 2 4 8
0

10
20
30
40

R
un

ni
ng

tim
e

(m
s)

Sequential Write

0.250.5 1 2 4 8
0

10
20
30
40
50
60

Sequential Read

0.250.5 1 2 4 8
0

20
40
60
80

Random Write

0.250.5 1 2 4 8
0

10
20
30
40
50
60
70
80

Random Read

Figure 9: I/O performance of 4MB file for various block sizes (The x-axis shows block size in MB)

200

600

1000

1400

IO
PS

Insert

500

1500

2500

3500

Update

200

600

1000

1400

1800
Delete

10K

30K

50K

Query
Native
B Framework
DM App

Figure 10: Database Microbenchmark

measure the I/O latency for a file of 4MB, for both sequential and
random I/O. For random I/O, we issue I/O at 4KB chunks.

Figure 9 shows the performance for sequential and random I/O.
With smaller block sizes, BlueMountain has to create multiple ob-
jects for the same file and I/O involves reading and writing to
multiple objects. This adds additional overhead in our translation
layer and degrades the performance. For instance, when the ob-
ject size is 512KB, our system creates eight objects for a 4MB file.
Hence, the overhead is higher compared to the case where we use
the object size of 4MB—this is due to the difference in the number
of objects that need to be created. With the object size of 8MB,
there is no improvement as we still end up creating only one ob-
ject. However, smaller objects might be beneficial with an app that
issues many random I/O operations with frequent updates, since
each update operation only needs to affect an object of a small size.
Smaller object sizes can also reduce the network sync traffic if the
app frequently updates the files after they are created.

Database operations: We have measured the overhead for data-
base operations on Android’s native database interface, with Blue-
Mountain framework, and with a pluggable data management app.
Just as in files, for framework experiments, the database operations
go through our translation layer, and instead of redirecting the
database operations to the data management app, we execute these
operations on a local database. Similarly, to measure the pluggable
overhead, we have developed a data management app for database
which just uses a local database and Android’s SQLiteDatabase
interface to access it. Figure 10 shows the measurements in opera-
tions per second and for the four basic database operations—insert,
update, delete and query. We have performed these operations on a

System Throughput (write)
Native Android 68

Personal Device Syncing app (4.1) 52
Efficient Cloud Syncing app (4.2) 60

Table 2: Full Stack File Throughput (MB/s)

table with 5 columns and having 10 rows to start with. We run 1000
iterations for each operation and measure the average and standard
deviation. As we can see from the measurements, the overhead due
to our framework and pluggable system is fairly minimal.

5.2 End-to-End BlueMountain Evaluation
We have measured the end-to-end throughput by plugging in the
different data management solutions we have created as explained
in Section 4. When the data management systems are plugged in,
the app might experience slowdown due to two reasons. First is
a combination of the “framework” and “pluggable” overhead as
evaluated in our microbenchmarks. Second is due to the slowdown
of the system when the data management apps are working in back-
ground. To quantify these, we have measured the throughput of
our system, as MB/s writes for files and as the number of database
operations per second for databases. We compare both these mea-
surements with the corresponding measurements obtained from
directly using the Android file/database APIs for local I/O—the goal
here is to measure the maximum performance degradation that
an app can experience when a data management app with cloud
syncing abilities is plugged in.

Files: Table 2 shows the throughput for the two file data man-
agement systems we discussed in Section 4.1 and 4.2 and compare
them with the native file throughput. We plugged in the two data
management systems to our test suite app, one at a time, and en-
abled syncing to Dropbox and a private server which was hosted
on our local network. We issued a large write from our test app, so
the data management apps were continuously syncing the data to
the cloud in the background. When the app is under full load, we
measure the time taken to write a 1GB file. As we can see in the ta-
ble, there is a slight degradation in the throughput compared to the
native on both our file data management systems. We attribute this
to the overhead caused by a background task which was actively
syncing data to Dropbox and local server as described in Section 4.

Database Syncing Systems: Next, we show the performance
of the three database syncing systems we have developed for Blue-
Mountain, as previously described in Section 4.3. The goal of these
systems is to synchronize the database with a remote server in the

0 10 20 30 40 50 60
0

20

40

60

80

To
ta

lH
ea

p
S

iz
e

(M
B

)

GameofWar
GameofWar*

0 10 20 30 40 50 60
0

10

20

30

40

50

VideoFX
VideoFX*

0 10 20 30 40 50 60
0

5

10

15

20

25

Scanner
Scanner*

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

WebEx
WebEx*

0 10 20 30 40 50 60
0

10

20

30

40

50

Kayak
Kayak*

Figure 11: Heap Usage (*Instrumented apps): The x-axis shows elapsed time in seconds.

System Insert Query Update Delete
Native Android 1782 6300 1865 1835

File-Sync 764 6245 803 486
Log and replay 1367 6106 1485 1374

Multiple Databases 444 5188 417 407

Table 3: Full Stack Database Throughput (IOPS)

background and we capture the performance overhead of these
systems when they are under full load and syncing data in the
background.

For these measurements, we have a similar experimental setup
for all three systems. We create eight tables, each having five
columns and fifty rows. Our testing app, for which we plug in
one database management app at a time, will run the four database
operations—insert, update, delete and query, for 1,000 iterations. We
then repeat the same experiment by directly using the Android’s
database APIs. All our database management systems synchronize
data with a server. For our measurements, we used a local server
hosted on our local network. Table 3 shows the throughput of four
database operations using the three data management systems dis-
cussed in Section 4.3 along with the Android’s native database APIs.
We can see the throughput for write operations with these data
management apps are considerably lower than that of the native
database. In the next three paragraphs, we explain the possible
reasons for this.

Log and replay: The log and replay system (described in Sec-
tion 4.3) will synchronously log SQL operations to a persistent
log-file on every database write operation. Since the log file is
synchronously updated, we can observe a noticeable overhead for
operations that modify the database—insert, update and delete. As
queries are not logged, there is no additional overhead and the
performance is comparable to the native performance. We also
have a background task that continuously syncs the log-file to our
server. When the system is under full load, this would affect the
performance as well.

File sync: The file sync system (described in Section 4.3) has to
notify a background task whenever a database write operation is
issued. This, along with the computationally intensive background
task of identifying the file chunks that are updated on each database
operation, adds to the overhead. Like the log and replay, the queries
are relatively unaffected by this and is comparable to the native
system.

Multiple databases: In the multiple database system (described
in Section 4.3), the overhead mainly comes from using multiple
databases through a single connection. Due to this reason, the way
database is accessed is changed and we can observe a higher penalty
on queries as well. Like the previous two systems, this system is

also continuously syncing the database files, but in this case, only
the file which was affected by the operation. Thus, like the previous
two database systems, we observe that the background sync slows
down the system in this case well. The trade-off in this system is
that we can achieve lower network traffic while the operations are
slower.

5.3 Large Scale Instrumentation
In order to evaluate our support for automation, we inject Blue-
Mountain interface into 400 existing apps by bytecode instrumen-
tation. This means that these 400 apps, after our instrumentation,
can leverage BlueMountain automatically without any involvement
from their original developers. By default, BlueMountain uses the
local filesystem for all storage calls if there is no pluggable data
management app. We use this default setting to evaluate our instru-
mentation.

Instrumentation Correctness: To verify the correctness of
our instrumentation, we have used the following three methods:

(1) Robustness Testing: In our first experiment, we have run
all 400 apps using our automated UI testing system. This sys-
tem uses Android UI Automator [15] to generate random UI
events such as button clicks and text input. We have run each
app (unmodified version and BlueMountain instrumented
version) for 10 times and 30 seconds each time. With every
run, we have recorded all the exceptions an app throws. Then,
we have compared the exceptions thrown by the unmodified
app with the exceptions thrown by the same app with Blue-
Mountain instrumentation. If there were any exception with
BlueMountain that does not appear in the unmodified app,
we consider it a result of incorrect instrumentation. For all
400 apps, we have verified that there is no app that throws
new exceptions with BlueMountain.

(2) LogAnalysis: For our second experiment, we have modified
our framework to track the number of I/O related calls that
are invoked and successfully handled by our framework. This
was done to make sure that our automated tests were indeed
resulting in I/O calls. With the logs enabled, we have re-run
the automated tests previously described and observed that
every method in the BlueMountain interface was triggered
during our runs. Table 6 summarizes the number of calls
our framework handled in the course of the testing 400 apps.
These results show that our tests successfully triggered many
I/O calls which were successfully handled by our system.

(3) Manual Testing: Lastly, we selected five apps (a camera
app, a video editor, a text editor, a shopping list manager,
and a game) and manually tested each one of them. Through

Category Examples Inst. Time Avg.
(Min./Max.)

DEX Size Avg.
(Min./Max.)

DEX Size Increase
Avg. (Min./Max.)

Lines of Code Avg.
(Min./Max.)

Lines of Code
Increase Avg.
(Min./Max.)

Game Game of War - Fire Age, Fruit Slice 27.7s (5.5s/53.4s) 2.6M (169.7K/4.4M) 330.1K (16.3K/818.9K) 231.34K (9.44K/379.40K) 3.65K (3.65K/3.70K)
Entertainment VideoFX Music Video Maker,

ESPN Fantasy Sports
31.7s (2.8s/74.9s) 3.6M (293.5K/9.8M) 404.3K (37.1K/1.3M) 294.75K (7.51K/748.96K) 3.67K (3.65K/3.73K)

Media Radi Music, Google News & Weather 27.4s (1.8s/63.2s) 3.2M (17.9K/8.5M) 348.0K (31.5K/1.5M) 259.40K (0.97K/676.75K) 3.66K (3.65K/3.75K)
Education NASA, ABC Preschool Free 19.3s (2.3s/52.3s) 2.0M (159.1K/6.5M) 289.0K (14.1K/980.1K) 160.69K (5.06K/537.00K) 3.65K (3.65K/3.69K)
Personalization Asteroids 3D live wallpaper, Twemoji 18.0s (1.6s/57.9s) 1.9M (18.6K/7.1M) 246.5K (5.5K/553.9K) 164.80K (0.23K/559.70K) 3.65K (3.65K/3.68K)
Productivity Google Now Launcher,

Barcode Scanner
16.1s (1.5s/71.8s) 1.7M

(4.9K/8.8M)
272.8K (30.1K/1.3M) 145.22K (0.16K/803.07K) 3.65K (3.65K/3.71K)

Business Cisco WebEx Meetings,
Indeed Job Search

29.4s (1.9s/56.7s) 3.5M (38.2K/7.7M) 362.1K (21.5K/1.2M) 282.34K (1.72K/607.75K) 3.67K (3.65K/3.87K)

Social KAYAK Flights, Hotels & Cars,
Airbnb

32.9s (8.5s/64.7s) 3.8M
(1.2M/8.0M)

439.4K (59.6K/952.1K) 315.21K
(66.94K/650.81K)

3.66K (3.64K/3.72K)

Total N/A 25.3s (1.5s/74.9s) 2.8M
(4.9K/9.8M)

336.5K (5.5K/1.5M) 231.72K (0.16K/803.07K) 3.66K (3.64K/3.87K)

Table 4: Instrumentation Results for 400 Popular Apps (50 apps in each category)

App Name Average (J) Std Dev (J)
Game of War 1340.7J 26.3J
Game of War* 1381.2J 30.5J

VideoFX 949.3J 15.6J
VideoFx* 939.0J 22.9J

Barcode Scanner 666.7J 8.1J
Barcode Scanner* 678.4J 8.6J

Cisco WebEx 767.1J 21.5J
Cisco WebEx* 787.0J 8.5J

Kayak 494.9J 10.0J
Kayak* 496.0J 10.1J

Table 5: Energy Consumption (*Instrumented apps)

API Number of Calls
Files 331,759

Databases 28,660
Shared Preferences 100,052

Table 6: API Invocation Count

this experiment, we have verified that (1) the experience of
using these apps was the same as using the unmodified app,
(2) there was no noticeable lag when using these apps, and
(3) all the I/O was successfully redirected to a preconfigured
location.

From these experiments, we conclude with reasonable confidence
that there was no error in the functionality of the apps we tested
after instrumenting them with BlueMountain.

Instrumentation Overhead: Table 4 shows the apps and their
code metrics of our instrumentation. As shown, injecting Blue-
Mountain’s framework code (which uses the local filesystem by
default) does not have significant overhead in terms of instrumen-
tation time and code size increase.

Heap and Energy Usage: Figure 11 shows the heap usage of
five well-known apps—Game of War [44], VideoFX [12], Barcode
Scanner [37], Cisco WebEx [6], and Kayak [21]. Even in terms of
heap usage, BlueMountain does not incur much overhead compared
to the original apps. Table 5 shows energy consumption of the five
apps with and without BlueMountain. We have used a Nexus S
phone, connected with a Monsoon Power Monitor for measurement,
and run the five apps for ten minutes five times. The averages are
all within the standard deviation, which indicates that there is little
statistical difference in energy consumption.

Database Feature Percentage of Apps Using
Thread control calls 1.6%

Compiled statements 19.2%
Custom CursorFactory 7.8%

Table 7: Unsupported Database Features

5.4 Unsupported Database APIs
As we discuss in Section 3, our current prototype does not support
non-essential database APIs—APIs for control over parallel queries,
APIs for compiled SQLite statements, and APIs for customized
output access—in the interest of keeping our interface clean and
simple. In order to understand how popular these unsupported APIs
are, we have downloaded 2000 popular Android apps from Google
Play, statically analyzed them, and gathered statistics on how many
apps use the APIs. Through this experiment, we have found out
that 511 out of 2000 apps use at least one of the APIs. Further,
Table 7 shows the percentage of apps that use the features. As
shown, compiled SQLite statements are the most popular feature. As
mentioned earlier, there are alternative ways for app programmers
to accomplish the same tasks for these features and we can still
support them by including them in our interface.

6 DISCUSSION
Security: While our system enables flexibility of data management
for end users, one important challenge is security, where a mali-
cious app pretends to be a data management app and potentially
compromises user data. Although our current work does not di-
rectly address security questions, mishandling of user data has
been one of the biggest and known concerns for malicious apps on
Android [17]. Moreover, techniques for mitigating such a concern
are already in place [3] and will be applicable for malicious data
management apps as well.

Switching Data Management Apps: A potential feature of
interest is the ability to hot-swap different data management apps
at run time. Since each data management app would implement
their own way of managing data, enabling hot-swap between data
management apps would require an ability to export from one
data management app and importing to another. We are currently
investigating various ways to provide this feature.

Extending Coverage: In our current implementation, we still
depend on Android to manage the filesystem metadata and structure
for a data management app. This can be a limitation when a user

wants to use a highly secure data management system without
leaking any information to the platform. We plan to address this
issue in our future work by providing wrappers around the Android
metadata management APIs.

7 RELATEDWORK
Integrating Cloud Services: Previous work has tackled various
challenges with mobile devices accessing cloud storage services.
This ranges from optimizing data sync mechanism and providing
better consistency models to providing more user functionality. In
our own previous work, which laid the foundation for this work, we
have explored the possibility of automatically integrating various
cloud services into existing apps [5]. Many other systems provide
libraries to be integrated with the apps or suggest modifications to
underlying operating system/framework or to the cloud servers;
our focus is complementary to these approaches, as we provide a
mechanism through which some of these solutions can be easily
deployed and used by the end user.

Call Interception: Our mechanism of intercepting Android
storage calls and redirecting them is similar to FUSE [22]. Glus-
terFS [28] also uses LD PRELOAD to intercept the POSIX filesystem
calls and replace them with a custom implementation of GlusterFS
core libraries. Recently, other techniques, such as Java bytecode
rewriting and instrumentation, are utilized to change the behavior
of applications without modifying their source code [4, 9, 10, 20,
25, 29, 32, 33, 38]. In the following, we discuss lines of research in
data management issues arising from mobile apps and cloud-based
storage services.

Cloud-Based File Synchronization Services: As cloud-based
file synchronization services become popular, their shortcomings,
challenges, and solutions have been discussed in the literature.
Viewbox [43] proposes a design that integrates local file systems
with cloud-based storage services to detect and recover from both
inconsistency and data corruption that may happen in loosely cou-
pled file synchronization services. QuickSync [8] and UDS [24]
improve the efficiency of data synchronization in mobile devices
using a variety of techniques. Metasync [18] implements a secure
and reliable file synchronization mechanism by utilizing multiple
cloud storage services.

Novel Data Management in Mobile Apps: A line of work
discusses issues arising from how modern mobile apps utilize both
filesystems and databases at the same time. Pebbles [35] argues
that mobile apps do not correctly delete related data stored in
filesystems and database and designs a system that can find the
implicit relationships in an app’s data stored in mobile devices.
Simba [13] is a data-sync service for mobile apps and provides
stronger consistency guarantees than file-based synchronization
service. Diamond [42] designs a data management platform for
reactive applications. Additionally, many commercial platforms
such as Firebase [16] and Kinvey [34], enable app developers to link
their apps to cloud backend which provides functionality like user
management, push notifications, data management etc., through
an emerging trend known as Mobile Backend as a Service (MBasS).
However, to take advantage of these services, the client components
have to be integrated into the app at development time.

Context and Constraint-Based Data Management: Procras-
tinator [27], analyses and rewrites app binaries to do context based
pre-fetching of the data. PSCloud [2] and Wherestore [36] create a
location based data storage model which lets the users store their
data on multiple devices. Cimbiosys [26] proposes partial replica-
tion of content shared among mobile devices and cloud services.
WearDrive [19] is a storage system for wearable devices that offloads
energy intensive tasks on the phone to improve the performance
of apps and battery life of wearable devices.

Providing Flexibility and Cloud Adaptability for Mobile
DataManagement:Modern web/mobile applications rely on cloud-
based storage services and there are various such services with
different APIs. SPANStore [41] and Cloudlib [1] unify multiple
cloud storage services with a single, key-value store interface. Blue-
Mountain can easily transform an existing mobile application from
using a single cloud storage provider to utilizing a layer like them.
Zumero [45] provides a extension to SQLite database which enables
database files to be synced across many devices. Lastly, to support
the trend of employees using their personal mobile devices at work-
place (BYOD), various Enterprise Mobility Management (EMM)
systems, dedicated to manage user-owned devices, have come into
existence. Systems like Airwatch [39], XenMobile [7], Android for
Work [14], etc., provide a suite which includes device management,
access control, data management (e.g. Airwatch Content Locker),
etc., enabling personal devices to securely access corporate data.
These platforms typically require a custom enterprise app to take
advantage of their solutions while BlueMountain targets general
apps which can be used by any user.

8 CONCLUSION
In this paper, we have presented a novel approach for customized
data management on mobile devices. We have made a case for a new
kind of app ecosystem where data management apps and regular
apps exist. Our approach lets app developers focus on app logic
while providing a way for data management app developers to
provide innovative data management mechanisms. Our approach
also gives end users better control over their data.

We demonstrate the usefulness of our approach by creating five
data management apps. Each of the apps implements a unique
mechanism for mobile data management, showcasing the flexibil-
ity of our approach. Our results show that our prototype system,
BlueMountain, incurs only modest overhead in terms of read/write
latency and throughput.

9 ACKNOWLEDGMENTS
We would like to acknowledge the works of Ajay Pratap Singh
Chhokar, Ramanpreet Singh Khinda, and Aniruddh Ramesh Adkar
who helped us immensely in developing the initial prototype of our
data management apps. We would also like to thank the anonymous
reviewers and our shepherd, Aruna Balasubramanian, for their
valuable feedback. Lastly, we want to thank everyone working in
our lab (Reliable Mobile Systems), for providing timely feedback.
This work was supported in part by the generous funding from the
National Science Foundation, CNS-1350883 (CAREER) and CNS-
1618531.

REFERENCES
[1] Apache. 2017. Apache Libcloud. (Jan 2017). Retrieved July 10, 2017 from

http://libcloud.apache.org
[2] Sobir Bazarbayev, Matti Hiltunen, Kaustubh Joshi, William H Sanders, and

Richard Schlichting. 2013. Pscloud: a durable context-aware personal storage
cloud. In Proceedings of the 9th Workshop on Hot Topics in Dependable Systems.
ACM, 9.

[3] Google blog. 2017. Shielding you from Potentially Harmful Applications. (Feb
2017). Retrieved July 10, 2017 from https://goo.gl/KosA6d

[4] A. Chander, J.C. Mitchell, and Insik Shin. 2001. Mobile Code Security by Java
Bytecode Instrumentation. In DARPA Information Survivability Conference and
Exposition II, 2001. DISCEX ’01. Proceedings, Vol. 2. 27–40.

[5] Sharath Chandrashekhara, Kyle Marcus, Rakesh GM Subramanya, Hrishikesh S
Karve, Karthik Dantu, and Steven Y Ko. 2015. Enabling Automated, Rich, and
Versatile Data Management for Android Apps with BlueMountain.. InHotStorage.

[6] Cisco. 2017. Cisco WebEx Meetings. (Jan 2017). Retrieved July 10, 2017 from https:
//play.google.com/store/apps/details?id=com.cisco.webex.meetings&hl=en

[7] Citrix. 2017. XenMobile. (Jan 2017). Retrieved July 10, 2017 from https://www.
citrix.com/products/xenmobile/

[8] Yong Cui, Zeqi Lai, Xin Wang, Ningwei Dai, and Congcong Miao. 2015. QuickSync:
Improving Synchronization Efficiency for Mobile Cloud Storage Services. In
Proceedings of the 21st Annual International Conference on Mobile Computing and
Networking. ACM, 592–603.

[9] Benjamin Davis and Hao Chen. 2013. RetroSkeleton: Retrofitting Android Apps.
In Proceeding of the 11th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’13).

[10] Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen. 2012. I-
ARM-Droid: A Rewriting Framework for In-App Reference Monitors for Android
Applications. In Proceedings of the IEEE Mobile Security Technologies (MoST ’12).

[11] Dropbox. 2014. Streaming File Synchronization. (Jul 2014). Retrieved July 10, 2017
from https://blogs.dropbox.com/tech/2014/07/streaming-file-synchronization/d

[12] FuzeBits. 2017. VideoFX Music Video Maker. (Jan 2017). Retrieved July 10, 2017
from https://play.google.com/store/apps/details?id=com.videofx&hl=en

[13] Younghwan Go, Nitin Agrawal, Akshat Aranya, and Cristian Ungureanu.
2015. Reliable, Consistent, and Efficient Data Sync for Mobile Apps.
In FAST’15. USENIX Association. https://www.usenix.org/conference/fast15/
technical-sessions/presentation/go

[14] Google. 2017. Android for Work. (Jan 2017). Retrieved July 10, 2017 from
https://www.android.com/work

[15] Google. 2017. Android UI Automator. (Jan 2017). Retrieved July 10, 2017
from https://developer.android.com/topic/libraries/testing-support-library/index.
html

[16] Google. 2017. Firebase. (Jan 2017). Retrieved July 10, 2017 from https://firebase.
google.com/

[17] Google. 2017. The Google Android Security Team’s Classifications
for Potentially Harmful Applications. (Feb 2017). Retrieved July
10, 2017 from https://source.android.com/security/reports/Google Android
Security PHA classifications.pdf

[18] Seungyeop Han, Haichen Shen, Taesoo Kim, Arvind Krishnamurthy, Thomas
Anderson, and David Wetherall. 2015. MetaSync: File synchronization across
multiple untrusted storage services. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15). 83–95.

[19] Jian Huang, Anirudh Badam, Ranveer Chandra, and Edmund B Nightingale.
2015. WearDrive: fast and energy-efficient storage for wearables. In 2015 USENIX
Annual Technical Conference (USENIX ATC 15). 613–625.

[20] Galen Hunt and Doug Brubacher. 1999. Detours: Binary Interception of Win32
Functions. In Proceedings of the 3rd Conference on USENIXWindows NT Symposium
- Volume 3 (WINSYM ’99).

[21] Kayak. 2017. KAYAK Flights, Hotels & Cars. (Jan 2017). Retrieved July 10, 2017
from https://play.google.com/store/apps/details?id=com.kayak.android&hl=en

[22] Linux Kernel. 2017. FUSE. (Jan 2017). Retrieved July 10, 2017 from http://fuse.
sourceforge.net/

[23] Taeyeon Ki, Alex Simeonov, Bhavika Jain, Chang Min Park, Keshav Sharma,
Karthik Dantu, Steven Y. Ko, and Lukasz Ziarek. 2017. Reptor: Enabling API
Virtualization on Android for Platform Openness. In Proceedings of the 15th
annual International Conference on Mobile Systems, Applications, and Services
(MobiSys ’17). ACM.

[24] Zhenhua Li, Christo Wilson, Zhefu Jiang, Yao Liu, Ben Y Zhao, Cheng Jin, Zhi-
Li Zhang, and Yafei Dai. 2013. Efficient batched synchronization in dropbox-
like cloud storage services. In ACM/IFIP/USENIX International Conference on
Distributed Systems Platforms and Open Distributed Processing. Springer, 307–327.

[25] Microsoft. 2017. Windows Hooks. (Jan 2017). Retrieved July 10, 2017 from
http://goo.gl/r32d7B

[26] Venugopalan Ramasubramanian, Thomas L. Rodeheffer, Douglas B. Terry, Meg
Walraed-Sullivan, Ted Wobber, Catherine C. Marshall, and Amin Vahdat. 2009.
Cimbiosys: A Platform for Content-based Partial Replication. In NSDI’09. USENIX
Association. http://dl.acm.org/citation.cfm?id=1558977.1558995

[27] Lenin Ravindranath, Sharad Agarwal, Jitendra Padhye, and Chris Riederer. 2014.
Procrastinator: Pacing mobile apps’ usage of the network. In Proc. ACM MobiSys.

[28] RedHat. 2017. GlusterFS. (Jan 2017). Retrieved July 10, 2017 from https://www.
gluster.org/

[29] Jonathan Rentzsch. 2016. Mach Inject. (Nov 2016). Retrieved July 10, 2017 from
https://github.com/rentzsch/mach inject

[30] Slim Roms. 2017. Slim Roms. (Jan 2017). Retrieved July 10, 2017 from https:
//slimroms.org/

[31] Rsync. 2017. Lib Rsync. (Jan 2017). Retrieved July 10, 2017 from http://librsync.
sourceforge.net/

[32] Algis Rudys and Dan S. Wallach. 2003. Enforcing Java Run-time Properties
Using Bytecode Rewriting. In Proceedings of the 2002 Mext-NSF-JSPS International
Conference on Software Security: Theories and Systems (ISSS ’02).

[33] Haichen Shen, Aruna Balasubramanian, Anthony LaMarca, and David Wetherall.
2015. Enhancing Mobile Apps to Use Sensor Hubs Without Programmer Effort.
In Proceedings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp ’15). ACM, New York, NY, USA, 227–238. https:
//doi.org/10.1145/2750858.2804260

[34] Progress Software. 2017. Kinvey BaaS. (Jan 2017). Retrieved July 10, 2017 from
https://www.kinvey.com/

[35] Riley Spahn, Jonathan Bell, Michael Lee, Sravan Bhamidipati, Roxana Geambasu,
and Gail Kaiser. 2014. Pebbles: Fine-Grained Data Management Abstractions
for Modern Operating Systems. In OSDI’14. USENIX Association. https://www.
usenix.org/conference/osdi14/technical-sessions/presentation/spahn

[36] Patrick Stuedi, Iqbal Mohomed, and Doug Terry. 2010. Wherestore: Location-
based data storage for mobile devices interacting with the cloud. In Proceedings
of the 1st ACM Workshop on Mobile Cloud Computing & Services: Social Networks
and Beyond. ACM, 1.

[37] ZXing Team. 2017. Barcode Scanner. (Jan 2017). Retrieved July 10,
2017 from https://play.google.com/store/apps/details?id=com.google.zxing.client.
android&hl=en

[38] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java bytecode Optimization Framework. In Pro-
ceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON ’99).

[39] VmWare. 2017. Air-Watch Enterprise mobility platform. (Jan 2017). Retrieved
July 10, 2017 from https://www.air-watch.com/

[40] Wi-Fi.org. 2017. Wi-Fi Direct. (Jan 2017). Retrieved July 10, 2017 from http:
//www.wi-fi.org/discover-wi-fi/wi-fi-direct

[41] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V.
Madhyastha. 2013. SPANStore: Cost-effective Geo-replicated Storage Spanning
Multiple Cloud Services. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (SOSP ’13). ACM, New York, NY, USA, 292–308.

[42] Irene Zhang, Niel Lebeck, Pedro Fonseca, Brandon Holt, Raymond Cheng, Ari-
adna Norberg, Arvind Krishnamurthy, and Henry M. Levy. 2016. Diamond: Au-
tomating Data Management and Storage for Wide-Area, Reactive Applications. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). USENIX Association, GA, 723–738. https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/zhang-irene

[43] Yupu Zhang, Chris Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2014. ViewBox: Integrating Local File Systems with Cloud Stor-
age Services. In FAST’14. USENIX. https://www.usenix.org/conference/fast14/
technical-sessions/presentation/zhang

[44] Machine Zone. 2017. Game of War - Fire Age. (Jan 2017). Retrieved July 10, 2017
from https://play.google.com/store/apps/details?id=com.machinezone.gow&hl=
en

[45] Zumero. 2017. SQL Datasync for Mobile Apps. (Jan 2017). Retrieved July 10,
2017 from http://zumero.com

http://libcloud.apache.org
https://goo.gl/KosA6d
https://play.google.com/store/apps/details?id=com.cisco.webex.meetings&hl=en
https://play.google.com/store/apps/details?id=com.cisco.webex.meetings&hl=en
https://www.citrix.com/products/xenmobile/
https://www.citrix.com/products/xenmobile/
https://blogs.dropbox.com/tech/2014/07/streaming-file-synchronization/d
https://play.google.com/store/apps/details?id=com.videofx&hl=en
https://www.usenix.org/conference/fast15/technical-sessions/presentation/go
https://www.usenix.org/conference/fast15/technical-sessions/presentation/go
https://www.android.com/work
https://developer.android.com/topic/libraries/testing-support-library/index.html
https://developer.android.com/topic/libraries/testing-support-library/index.html
https://firebase.google.com/
https://firebase.google.com/
https://source.android.com/security/reports/Google_Android_Security_PHA_classifications.pdf
https://source.android.com/security/reports/Google_Android_Security_PHA_classifications.pdf
https://play.google.com/store/apps/details?id=com.kayak.android&hl=en
http://fuse.sourceforge.net/
http://fuse.sourceforge.net/
http://goo.gl/r32d7B
http://dl.acm.org/citation.cfm?id=1558977.1558995
https://www.gluster.org/
https://www.gluster.org/
https://github.com/rentzsch/mach_inject
https://slimroms.org/
https://slimroms.org/
http://librsync.sourceforge.net/
http://librsync.sourceforge.net/
https://doi.org/10.1145/2750858.2804260
https://doi.org/10.1145/2750858.2804260
https://www.kinvey.com/
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/spahn
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/spahn
https://play.google.com/store/apps/details?id=com.google.zxing.client.android&hl=en
https://play.google.com/store/apps/details?id=com.google.zxing.client.android&hl=en
https://www.air-watch.com/
http://www.wi-fi.org/discover-wi-fi/wi-fi-direct
http://www.wi-fi.org/discover-wi-fi/wi-fi-direct
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhang-irene
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhang-irene
https://www.usenix.org/conference/fast14/technical-sessions/presentation/zhang
https://www.usenix.org/conference/fast14/technical-sessions/presentation/zhang
https://play.google.com/store/apps/details?id=com.machinezone.gow&hl=en
https://play.google.com/store/apps/details?id=com.machinezone.gow&hl=en
http://zumero.com

	Abstract
	1 Introduction
	2 BlueMountain Design Overview
	2.1 Data Management and App Decoupling
	2.2 Supporting Widespread Deployment
	2.3 Supporting Legacy Apps

	3 System Implementation
	3.1 The BlueMountain Interface
	3.2 BlueMountain Translation Layer
	3.3 BlueMountain Data Management App SDK
	3.4 Dynamic Loading and Instrumentation

	4 Pluggable Data Management Apps
	4.1 Personal-Device Cloud
	4.2 Efficient Data Synchronization
	4.3 Database Management

	5 Evaluation
	5.1 Microbenchmarks
	5.2 End-to-End BlueMountain Evaluation
	5.3 Large Scale Instrumentation
	5.4 Unsupported Database APIs

	6 Discussion
	7 Related work
	8 Conclusion
	9 Acknowledgments
	References

